京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代如何治理骚扰电话_数据分析师培训
您一天会接多少个骚扰电话?普通人一般一天能接到一到两个骚扰电话,比如半夜响一声就挂了的吸费电话。大早上被叫醒的卖保险、卖基金、卖房的各种推销电话。还有淘宝买东西,给了差评,卖家利用报复心理打电话,1个小时可以拨打几十个骚扰电话,有人一天之内接过1千多个骚扰电话,各种骚扰电话不分时间地点场合,就像灾年虫害一样,从普通人到国家领导人无一幸免。
来看一组数据,据某权威机构《2014年骚扰电话年度报告》显示,2014年全国骚扰电话总数达270亿通。就骚扰电话类型来看,“响一声”电话以50%的比例位居骚扰电话数量的首位,其次为广告推销、诈骗电话、房产中介和保险理财。这些骚扰电话的源头,是愈演愈烈的个人信息泄露。
被电话骚扰 大数据罪责难逃
大数据是个炒得很热的概念,物联网、云计算、移动互联网、车联网、手机、平板电脑、PC以及遍布地球各个角落的各种各样的传感器,无一不是数据来源或者承载的方式。大数据这座“金矿”在改善人们的生活上立下了汗马功劳,但大数据需要采集大量的个人信息,其中就会涉及许多个人隐私。
除了办理信用卡,网上租赁房屋,网上购物,游戏注册认证之外,随着大数据的广泛应用,像手机打车软件、订餐软件、微信、各种热门app等,让我们享受便利的同时,不可避免得需要读取我们的地理位置和通讯录信息等。数据的价值在于将正确的信息在正确的时间交付到正确的人手中,否则,那就是棱镜的另一面。
关于个人信息及敏感隐私数据泄露事件是层出不穷,“棱镜计划”、“支付宝安全门事件”、“12306用户数据泄露”等一系列事件为人们敲响了大数据时代个人信息安全的警钟。引发的不仅是铺天盖地的广告推销,还给不法分子可乘之机,利用个人信息进行各种私人调查、实施非法商业竞争、实施刑事犯罪、进行身份盗窃等。拿最典型的骚扰电话来说,许多骚扰行为是无孔不入,甚至出现了伪基站,他们模仿中国移动的信号,达到盈利的目的。
大数据如何泄露个人隐私?
毋庸置疑,大数据分析是商业智能的演进,相比于传统的数据,具有数据量大、查询分析复杂、高效等特点。比如,沃尔玛每隔一小时处理超过100万客户的交易,录入量数据库估计超过2.5 PB相当于美国国会图书馆的书籍的167倍 。FACEBOOK从它的用户群获得并处理400亿张照片。解码最原始的人类基因组花费10年时间处理,如今可以在一个星期内实现。
因为个人信息数据的多种多样,大数据还会覆盖如智能终端、智能手环、物联网、位置导航等个人端产生的海量信息,这些开放、分散的、海量的数据实时接入网络,管理员很难像传统互联网管理一样逐一对其编辑和管理,进行实时跟踪保护。
同样,大数据收集缺乏针对性,容易导致广泛、不合理、过度收集个人信息数据,常常通过覆盖面很广的个人信息收集和分析后才能找出其中有价值的信息,在此过程中很难避免不触碰到一些个人隐私数据。没有价值的信息又会丢弃,这些被丢弃的信息里又难免有个人隐私数据等。
怎样治理电话骚扰?
当然,建立健全相关法律法规是第一位的。目前,世界上已有50多个国家和地区制定了保护个人信息的相关法律,我国在大数据个人信息安全方面缺乏权威化的法律规制,缺少统一监管和行业自律,我国应制定统一的个人信息保护法,对公民个人信息的采集、使用和保密等问题作出详细规定。实际上,这个工作很早就已经开始,但个人信息保护法至今还没有出台,原因在于查处难、取证难、维权难。
随着大数据的日益蓬勃发展,在可以预见的将来,个人隐私保护将仍是要解决的重要课题。如果能够将保护个人隐私信息作为大数据技术突飞猛进的另一个考量,那么相关筛选和屏蔽个人隐私信息的技术也不是难事。归根结底,没有整治的军队必然是一团散沙,只有下定决心改变,才能看到曙光。同时需要提升用户的安全保护意识,群策群力,在大数据上做到双赢。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27