
2015年5个大数据技术预测_数据分析师培训
大数据技术快速进化,各种迹象显示2015年仍将持续。MapR的联合创始人兼CEO John Schroeder预测,在2015年里,五大发展将会主导大数据技术。
在短短几年里,大数据技术从炒作的概念变为新数字时代的核心破坏者。2014年,公司里越来越多的大数据举措从测试步入生产。2015年,大数据将在企业里进一步推进,使用更多的用例(特别是实时用例),Hadoop分布式专家MapR的联合创始人兼CEO John Schroeder说。
Schroeder说:“今年,机构将覆盖之前的初次批量实现,进行大数据实时部署。现有的行业领导者和那些后起之秀已经付出了巨大努力,它们通过将新的大数据平台合并到‘动态’数据分析中来影响业务,这些实现将驱动行业的发展。”
Schroeder说五大发展将会主导2015。
1.数据敏捷性成为焦点
对于许多需求来说,遗留的数据库和数据仓库的处理过程过于缓慢和僵化,因此数据敏捷性是大数据技术发展的驱动力之一。在2015年,Schroeder认为,随着机构将他们的注意力从捕获和管理数据转换到使用它们,数据敏捷性将会更加集中。
他说:“遗留的数据库和数据仓库如此昂贵,以至于需要DBA对数据进行全面综合和结构化。前期的DBA成本推迟了对新数据源的访问,而随着时间的推移,这刚性的结构也很难改变。最终的结果就是,遗留数据库不够敏捷,不能满足今天多数组织的需要。”
他补充说:“最初的数据项目集中在目标数据源的存储。机构将会把自己的注意力转移到数据敏捷性上,而不是关心正在管理着多少数据。执行和分析数据的能力又是如何影响操作的?当用户偏好、市场条件、竞争行为和操作状态发生变化时,如何才能快速适应和响应?这些问题将会在2015年指引大数据的投资和规模。”
2.机构从数据湖泊转移到数据处理平台
从某种程度上来说,2014年是数据湖泊(或者数据中心)的一年。基于对象的存储仓库以其原生格式(无论是结构化的、非机构化的或半结构化的)保存着原始数据,直到可以使用。数据湖泊有着强烈的价值主张,它们代表着一个可伸缩的基础结构,这样的结构经济(降低了成本)又敏捷。
Schroeder认为,随着处理数据的多计算和执行引擎就位,数据湖泊将会在2015年继续发展。它不仅会更有效,它还会创建一个单点管理和一个单点安全。
“在2015年,随着机构从批处理转移到实时处理,将Hadoop、数据库和基于文件的引擎集成到他们的大规模处理平台,数据湖泊将会有所发展”,他说。 “换句话说,它并不是关于数据湖泊中支持大量查询和报告的大规模存储。2015年的大趋势是,围绕事件和数据的实时持续访问和处理,以此来获取稳定的状态和及时采取行动。”
3.自助服务大数据成为主流
大数据工具和服务的进步意味着,在2015年,商业用户和数据科学家访问数据的瓶颈将逐渐缓解,Schroeder说。
2015年,IT将会拥抱自助服务大数据,允许商业用户使用大数据自助服务,他说。“自助服务授权开发者、数据科学家和数据分析师直接控制对数据的探索。”
“之前,需要IT技术来建立集中的数据结构”,他补充道。“这是一种耗时和昂贵的做法。对于一些用例,Hadoop已经使得企业适应了‘结构准备好’。高级一点的机构将会转移到执行上的数据绑定,远离中心结构,以此来满足持续的需求。自助服务加快机构利用新数据源以及回应机会和威胁。”
4.Hadoop供应商整合:新商业模式的发展
早在2013年,因特尔引入了它自己的Hadoop版本,声称这个版本将会与原版有所不同,它采用一种增强的方法,将Hadoop直接置入到因特尔的机器中。但是一年后,因特尔放弃了它自己的版本,然后重磅推出Hadoop发行版供应商Cloudera。
当时,因特尔注意到,客户们都在观望Hadoop市场如何打开。Hadoop的选择实在是太多了。Schroeder相信,Hadoop供应商的整合在2015年将会继续,而失败者将会停止它们的发行版,将注意力转移到其它地方。
“现在,我们已经贡献开源代码20年了,它为市场提供了巨大的价值”,Schroeder说。“技术处于成熟阶段。技术生命周期始于创新和高度差异化产品的创造,止于产品最终商业化。[Edgar F.] Codd于1969年使用创新而建立了关系数据库概念,1986年也导致了Oracle IPO,而起始于1995年的第一个MySQL版本。所以历史上,数据库平台技术成熟之前,为了看到商业化,它花了26年时间的创新。”
“在技术成熟周期中,Hadoop是比较早的,自Google发布萌芽的MapReduce白皮书起,仅仅只有十年的时间”,他补充道。“在初级概念发布仅10年后,Hadoop在全球被采用,超越以往任何其它数据平台。Hadoop正在创新阶段,所以供应商误采用‘Red Hat for Hadoop’策略已经在市场上出现了,尤其是因特尔和最近的EMC。”
Schroeder相信,2015将会见到一个崭新的、更微妙的开源软件的发展,它们会结合深度创新和社区开发。
“开源社区对于建立标准和共识是至关重要的”,他说。“竞争是催化剂,它将Hadoop从最初的批分析处理器转换成一个全功能数据平台。”
5.企业架构师不再炒作大数据
2015年将会看到,企业架构师会成为焦点,因他们对Hadoop技术的深入理解,得到定义更好和更成熟的大数据应用需求说明,包括像高可用性和业务连续性等元素。
“在数据中心中,随着机构快速从试验转移到实际应用,企业架构师将前台和中心转移到实际应用”,Schroeder说。“IT领导在决定适应SLA的基础架构、提供高可用性、业务连续性和适应关键业务需求上就很重要了。在2014年,围绕Hadoop蓬勃发展的生态系统,拥有大量的应用、工具和组件。在 2015年,市场将集中在将Hadoop集成到数据中心,并交付业务结果所需的跨平台差异和架构上。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28