京公网安备 11010802034615号
经营许可证编号:京B2-20210330
通常网站管理者都想通过网站分析来得到一定的效果,但不知道怎么做才好。实际上能否灵活的使用网站分析很大程度上取决于你如何利用网站分析。这里给大家介绍一下网站分析师应该注意的五点内容。
在使用网站分析工具的公司中,有的公司能够熟练的使用网站分析工具反复优化自己的网站,随之业绩也有所增长,而有的公司虽然使用了网站分析工具但是 效果不是很明显。究竟为什么会存在这样的差异呢?通过分析我发现是否能够熟练的使用网站分析取决于你是否能够巧妙的使用一些技巧。
网站分析有很多技巧,下面为大家介绍其中5点:
1. 始终不能忘记数据分析的目的
2. 充分理解网站分析可以做到的事情和做不到的事情
3. 分成几个部分进行数据分析
4. 只注重数据分析本身是不会有效果的
5. 不能分析所有的数据
■ 始终不能忘记数据分析的目的
网站分析为我们提供了很多有关网站的数据,通过分析这些数据我们可以了解很多事情。例如:客人是通过哪些网站和广告来到网站的,在网站内的平均停留 多长时间,浏览某一网页的客人的转化率是多少,等等。如果你使用是高性能网站分析工具的话,那么你还能看到更多你想要统计的数据。使用优秀的网站分析工具 的话,喜欢分析的人就能够更加全面的把握网站的状况,从而做出准确的判断。
在这里最重要的一点是时刻把「网站分析的目的」铭记在心。
像这样,拥有了目标并且明确应该进行哪些分析是至关重要的。特别是对于喜欢分析的人更要时刻注意这一点。
■ 分成几个部分进行细致的剖析
将问题分成几个部分各个击破是我们分析时不错的办法。
例如,当转化率不佳的时候,我们可以针对「跳出率」「到达表单输入的跳转率」「表单输入完成率」3方面进行详细的分析,可以明确这3项中哪一部分存在问题。针对跳出率最高的地方进行集中的数据挖掘分析然后加以优化,这样一来能够立竿见影。
在掌握用户在网站内的行为的同时,通过对「由广告进入网站的访问者」「在搜索引擎中输入公司名进入网站的访问者」「在搜索引擎中输入商品名进入网站的访问者」「由本公司的电子杂志吸引到网站的访问者」等的分析,根据不同的网站访问的背景可以推测出不同用户的需求。
■ 充分理解网站分析可以做到的事情和做不到的事情
当你花费很多时间去做一些网站分析所办不到的事情时,大多数情况下这些时间都白白地浪费了。当我们明确了网站分析可以做到的事情和做不到的事情,并且把时间花在能够做到的事情上就不会徒劳无功了。对于网站分析做不到的事情我们采用网站分析以外的其他方法去解决。
例如:我们通过网站分析知道了「A,B,C页的退出次数很高」。接下来,通常会思考一下如何优化这些页面,但是对于网站开发人员来说,在制作网页时 对网页的设计很是满意,所以谈到优化页面的时候往往有些摸不着头脑。这种情况下,应该站在用户或专家这样的第三者立场上去看这些页面,这样页面存在的问题 就会浮出水面了。
■ 只注重数据分析本身是不会有效果的
很多人都清楚,虽然花费时间进行分析,但只注重数据本身是不会有任何帮助的。我们应该通过分析,找出网站的问题,然后进行改善。
所谓的改善并不是指重建网站或者一口气改变网站的风格这样大规模的改动。根据经验,「轻微的优化」如果可以达到预想之外的效果的话何乐而不为呢。所 谓的「轻微的优化」指的是改变按钮的颜色,或是位置,把第一眼注意到的信息变的更加醒目等,这些改动是不需要花费太多的时间和成本的。
我所在的数码林软件有限公司,为了帮助大家进行网站分析和优化,特别提供了「网站分析咨询」服务。下面我举一个实际的例子,为了提高认知度,仅仅改 变了资料申请按钮的颜色,跳转率就提高了10个百分点,仅仅将两个按钮的位置调换了一下转化率就提高了20个百分点,为了使访问者继续留在网站中,仅仅是 配置了一些链接就大幅度的提高了网站内的跳转,这样的例子不胜枚举。
■ 不能分析所有的数据
很多营业人员为了增加关键字广告的效果,会去关注所有的关键字的点击数,CPC,跳出率,转化率和CPA,甚至仅仅是抱着想了解的心态,去查看一个50多页网站的每个页面的浏览数和浏览时间。
确实通过详细的数据分析,能够掌握网站和用户的一些详细信息,但是,这样与所花费的工时相比效果确不是很理想。工作的“时间对效果”,也就是成本效益很低。
网站分析,注重大方面的同时,必要的时候小的方面也需要仔细的分析。大方面指的是,浏览数很高的网页,进入数很高的网页,投资很高的广告和关键字, 网站中特别重要的网页,商业活动中特别重要的商品网页等等。好不容易才抽出时间进行网站分析,所以尽量避免把时间花费在微不足道的地方,把时间花在对于优 化效果很明显的地方吧。
以上给大家介绍了一些网站分析师应该注意的东西。希望大家借鉴,总结出适合自己的分析方法。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12