
大数据驱动商业+工业4.0_数据分析师
商业4.0路径:“D世代企业”
IBM认为,D世代企业是大数据分析驱动型企业,可以战略性运用云计算、移动、社交和大数据分析工具,掌握并预测以客户为中心的市场状况和变化趋势,并根据数据洞察生成最佳行动建议,数据贯穿企业研发、生产、营销、服务等管理运作。
商业4.0和工业4.0的到来,与消费者自我意识觉醒及技术进步有着密切的关系。持续丰裕的生活终将带来消费者消费态度的质变,先是品味提升,最终是消费者自我意识的觉醒。而移动互联网、智能手机、可穿戴设备的普及,让基于用户识别和地理定位的服务变得可能。这一切改变了消费者与产品、品牌、厂商、甚至和其他消费者之间的沟通方式。重要的是,通过物联网、移动互联网、开放硬件平台、各种传感器,以及3D打印技术,人类第一次有机会将创造欲发挥到淋漓尽致,通过共创、众包构造自己想要的生活方式,消费者变成了新时代的创客。商业4.0便是创客的时代。
工业4.0,是大数据驱动的智能工业
不过,仅凭创客不可能充分满足商业4.0时代所需的一切供给,实际上更为重要的供给可能来自工业4.0:通过传感器与物联网来联结无生命的生产资料、零组件、生产仪器与设备,以及有生命的生产人员与管理人员,一方面让这些生产材料在生产过程里实时分享彼此之间所处的状态信息,另一方面也允许生产人员和管理人员随时随地介入生产过程,来进行制程变更或量身定制的弹性生产。
从这个视角看,商业4.0是工业4.0在需求面的有益补充。通过对消费者行为的追踪并由此所捕捉的大量消费数据必须利用数据科学进行计算与建模,并自动转化为商业决策与运营模式,然后通过工业4.0,随时动态调整生产流程来因应消费需求的动态变化。麦肯锡全球研究院指出,制造业会从生产机械、供应链管理和商品监控系统等来源收集数字数据,他们本来就是生产和储存数据的“大户”。 早在2010 年时,制造业所新增的数据便将近 2EB(计算机存储单位),如果把这些数据全印在纸上,装在标准尺寸的四门档案柜里,会需要 400 亿个柜子才装得下。
这也与IBM定义的工业4.0的特征不谋而合。在IBM看来,所谓工业4.0,其实就是大数据驱动的智能工业。IBM大中华区副总裁冯国华认为,这是一场由首席执行客户(CEC)推动的,以“D世代企业”(大数据分析驱动型企业)的诞生与发展为标志的,以大数据、云计算、移动、社交等技术为主要驱动手段的工业革命。其中,大数据分析的重要性尤为突出。概括而言,大数据深刻改变了工业企业的生产和决策。
在工业4.0趋势下:工业的信息化水平进一步提升,尤其是“互联化”和智能化的提升。以制造业为例,在其转型升级中,渗透着“互联”和“智能” 两个关键词,可以概括为几个方面:第一,产品智能化;第二,流程的智能化升级;第三,制造业的互联网化。“互联化”和“智能化”的进程,也将产生大量数据,大数据分析和管理将更为重要,也将驱动“互联化”和“智能化”的提升。而IBM以最前沿的CAMSS技术(C是指Cloud云;A是指BigData &Analytics,大数据和分析;M是指Mobility移动;第一个S是指Social社交,第二个S则是指Security安全),将助力中国企业、行业构建大数据能力,助力抓住工业互联网化,与产品和流程智能化的趋势,为“互联化”和“智能化”打下坚实基础,实现转型升级。
CEC是催生“D世代企业”的重要推力之一
当下,我们看到制造业正在经历蜕变式的转型升级,制造业的新形态正在形成,它们开始与互联网企业、服务业携手合作,跨界与融合成为重要趋势,并由此构造出由消费者驱动并深度参与的商业4.0时代。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26