
大数据时代的质量观_数据分析师
大数据是全球新型工业化进程的必然产物,与计算机科学技术的发展息息相关。所谓大数据,一般是指规模巨大的数据集,这些数据由于存储量和结构规模庞大,无法用现有的软件系统和统计模型进行分析和处理,无法完成数据的撷取、分类、关联和趋势等方面的分析,更难以达到数据分析运用于经营和管理等方面的目的。从统计学的角度来看,大数据包含四个基本特点:一是数据的体量庞大,从TB级别跃升到PB级别;二是数据的种类繁多,甚至打破我们对于常规统计量的认识;三是价值密度较低而商业价值较高;四是数据处理的速度快。
大数据的出现对质量科学的影响非常巨大和深远,这里探讨的质量观,一般是指人们对于质量的基本看法和观点,可以看成是一种质量科学领域的世界观。大数据背景下的质量观关系到我们对于质量科学未来发展的基本方向的认同,也会引起我们对于当前质量科学技术的思考和改进。
首先,大数据是面向质量过程的总体数据,而不再局限于随机样本。质量科学的进步最为内在的动力就是数理统计方法,其中抽样技术是最核心的方法之一。随机抽样是当代质量管理技术最重要的手段和方法,也是六西格玛管理和质量改进的重要技术特征。对于一个完整的工业过程而言,我们几乎可以收集到全部的总体数据。而大数据无法使用常规的统计软件和工具完成计算和分析,因此即便是收集到的全部统计数据,我们也几乎无法完成预定的质量管理和数据分析任务,需要借助专门的海量数据挖掘和云计算技术。这就出现了一个矛盾,即面向总体质量统计的大数据资源理论上可以满足一切质量管理的需要,但质量管理实践中却无法实现常规的统计分析和监控,因为数据量过于庞大。这个矛盾的解决方案存在很多争议,一个基本的共识就是允许一定误差的抽样方法仍然是未来一段时期内最有效率和最为公平的质量管理方法。
其次,大数据倾向于混杂计算的标准,而不是像以前一样精确。精确建模和计算是统计时代的产物,也是演绎逻辑的顶峰。在数据相对匮乏的年代,我们总是要求一切统计数据都要精确。但在大数据时代的数据,混杂而不精确性未必是缺点,而可能是一个亮点。接收数据的混杂性,必须承认一些基本的事实和想法。一是当数据量以几何级数增加的时候,降低数据容差可以获得更多的数据信息;二是要想获得大规模数据带来的好处,混杂应该是一种标准途径而不是竭力避免的;三是要认识到大数据的简单算法比小数据的复杂算法更有效。
最后,大数据分析更关注相关关系,而不是因果关系。传统的质量管理方法尤其注重因果逻辑,总是希望通过实验设计或者统计模型来描述事物之间的关系,而且这种关系是有因果逻辑支持的,很多质量改进技术都是在因果问题上做文章,用精确的数据模拟真实的质量生产过程,从而得到精确的结论。但大数据分析的主流研究成果相对更加注重“效果逻辑”,只强调数据之间存在的相关关系,而不管这种关系在实践中如何产生。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11