
大数据料引发下一场农业革命_数据分析师
19日,美国一年一度的农业前景论坛在首都华盛顿拉开帷幕。今年论坛的主题是“21世纪的智能农业”,而大数据技术对美国农业未来发展的影响成为本届论坛上的讨论重点。
美国农业部新任首席经济学家罗伯特·约翰松在论坛的第一场主旨发言中就表示,大数据技术拥有引发农业生产、供应链和全球农产品[0.15% 资金 研报]市场革命性变革的潜力。与会的不少专家学者也认为,大数据技术在农业生产中的大规模使用可能会引发与上世纪60年代开始的以化肥、杀虫剂、改良杂交品种为代表的农业“绿色革命”类似的巨大变革,而1960年开始的那场农业变革曾经使10亿人摆脱饥荒。
目前在美国,大数据技术在农业生产中的应用主要是通过安装在农场、农业机械上的信息收集装置收集与天气、土壤、水源、作物等与农业生产相关的海量数据信息,然后通过GPS、互联网、无限传输技术上传到农业技术公司的云端和数据库,然后通过计算机和农业专家进行数据分析,为农民从事农业生产提供精准的方案建议。
根据全球最大种子公司孟山都公司的预测,如果能够在全球推广大数据技术,全球粮食生产每年将能够增加约200亿美元收入。该公司表示,如果能在美国的玉米种植上推广大数据技术,美国每英亩的玉米产量将从目前的160蒲式耳提高至200蒲式耳,从而实现每英亩土地为农民增收182美元,而目前美国农业大州艾奥瓦州的农民每英亩玉米收入是759美元。
除了增收,农业企业也将因此获得大量商机。孟山都公司2013年就出资近10亿美元收购了美国气候公司,该公司拥有一套可以追踪监测土壤中氮含量的数据收集分析系统,该系统可以依据收集的信息给农民提供种植建议和发出警报。收购该公司后,每英亩土地可以为孟山都公司贡献最多可达100美元的利润。美国另一家大型种子公司杜邦先锋公司预计,未来10年,大数据技术服务每年将为该公司带来5亿美元收入。
除了大公司,很多新兴的农业科技小公司也同样从大数据中获益匪浅。根据路透社的报道,小公司虽然无法像大公司一样依靠自身财力获得土地、种子和气候信息,但它们可以借助从全国气象部门、谷歌地图等渠道获得的免费气候、土地信息以及农用机械自身收集的数据信息为用户提供更加具有针对性和更加灵活的产品。而且这类新兴的农业科技公司已经引起了华尔街风险投资基金的关注。
不过,将大数据技术应用到农业中也存在不小的风险。如何保障收集到的海量农业数据的安全、防止数据滥用和农民个人隐私数据泄露就也成为美国各界关注的焦点。去年11月,美国主要农业组织和农业技术提供商就在密苏里州堪萨斯城就保护农业数据隐私和安全达成协议,规定农民对在其土地上收集的农业数据拥有所有权,技术公司在收集、发布和使用相关农业数据时都要以准确易懂的方式告知农民,并获得其许可,双方要签署相关合同。
当前,美国政府和企业都在致力于推广大数据技术在美国农业生产上的应用,其积极影响正在逐步显现。农业是一个国家稳定、安全的根本,对于如我国这样人口众多的农业大国而言更是如此。如今我国与大数据相关的计算机数据处理分析和互联网技术已获得很大发展,农业机械化水平也在不断提高,如何在农业生产领域利用大数据,是我们面临的当务之急。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01