
Verint指点迷津:大数据从呼叫中心数据
Hadoop、YARN、全数据分析、数据建模等这些大数据名词纷至沓来时,不由你漠视大数据的趋势。但趋势归趋势,当你着手大数据应用时,从何着手就成为了一个非常现实的问题。
99%被忽视的数据
所谓大数据,让我们抛开其4V的特性,思考一些究竟有哪些数据应该进行分析,很多人将大数据理解为微博、微信等非结构化数据,实际上,很多行业/企业并不拥有这些数据,这些数据通常掌握在互联网厂商手里,对于很多行业/企业来说,基于互联网的应用很多还都是一个尝试性的阶段,对于互联网大数据分析还不是一个急迫的需求。
行业/企业拥有海量数据,这些数据大多是多年积累下来的经营性数据,如财务数据、生产制造、人力资源和办公管理数据等,很多数据属于结构化的数据,在行业/企业的经营管理中,其实非常依仗这些数据,已经得到了很好的分析和利用。对于行业/企业来说,没有得到重视和利用的数据其实并不多。
在行业/企业所拥有的海量数据中,最容易被忽略,也是企业与客户连接最为紧密的数据,实际上是Cal Center数据。据Verint数据分析公司所提供的数据,大部分Call Center能够利用的数据<1%(如图所示),其中,被使用的1%数据也仅限于日常管理,没有能够和企业战略和业务发展产生交集。
大数据分析创造价值
作为企业与用户连接作为紧密的部门,Call Center是企业面向用户交互的窗口,也是企业接触用户的主要途径,因此对于这些交互数据进行分析,很容易掌握用户的需求,为企业调整业务流程,开展新的服务提供决策依据。但在现实应用中,Call Center并没有发挥了解用户需求,指导研发、市场、制造和销售的效果,很多时候,Call Center不过扮演了售后服务,亡羊补牢的角色,最多承担部分线上销售工作,与其应该有的战略角色相去甚远。
“其中有一个重要原因在于Call center数据是音频,很多行业/企业缺少处理音频数据的分析工具。”Verint数据分析公司北亚区售前及售后服务总监汪志伟在接受采访时说。
数据容量巨大,数据类型多样,这是大数据的典型特点,而Call Center数据恰恰符合这样的特点。对于音频、视频等非结构化数据进行分析和处理,很多人很容易想到语音识别、人脸识别等技术,最典型的如iPAD Siri、微软Cortana(小娜)和小冰,无论在识别率,还是人工智能水准上都达到了令人满意的程度。
“但是行业/企业Call Center的数据处理并不是一个简单的语音识别转换,外加数据分析的过程。”汪志伟说。
Verint针对Call center数据分析提供了一整套完整的解决方案。
洞察信息价值
在Verint提供的解决方案中,看似散乱、无序的Call Center数据,其实蕴藏着很大的商业价值,提供对于数据分析归类,就可以将数据区分为忠诚客户、粉丝客户、成功/失败营销、潜在客户、投诉抱怨客户、重复来电和超长通话等类型(如图所示),对这些数据集进行洞察,很容易转变为商业价值。
对语音数据构建索引和聚类,这是一个非常具有技术含量的工作,其水平高低将直接影响到数据分析的使用和效果。
汪志伟表示,Verint数据分析公司的技术优势就在于完整的语音索引和聚类。Verint公司具有20多年的技术和经验积累,可以在几秒之内构建基于文件的索引、分析、查询和相应,提供了简单易用的索引和语音对照播放工具。其提供的语音分析系统,不仅能够自动侦测情绪激动的来电,也能够针对来电内容进行分析。
智能语音分析
完整语意索引和聚类
侦测情绪激动来电
克服建模难题
实际上,智能语音分析的过程不仅是一个全文转录及语义识别的过程,也是一个数据建模和数据分析的过程。在Verint解决方案中,通过设立产品和业务类别列表,就可以对代表每个业务类别的术语进行建模,并可以通过实践不断进行优化,从而也就解决了数据建模的问题(参见下图)。
解决了数据建模问题,接下来就可以对归类数据进行多维度分析。多维度数据分析给行业/企业用户创造了巨大商业价值。根据介绍,某保险公司,借助数据分析发现,可以针对某年龄端用户,提供针对性的保险金融服务。相比较以往,创新险种和服务,需要精算师结合大量的调查和经验,反复验证。如今,大数据分析部分代替了计算师的工作,为保险公司带来的新的工作方式。在电信运营商市场,针对不同客户群的各种套餐和定制服务,其种类之丰富,服务之灵活,很多都是建立在Call Center用户数据分析的基础上。
小结
显而易见,Call Center数据洞察本身就能带来巨大商业价值。除此之外,如果Call Center数据能够与企业ERP、CRM、E-mail、Web以及社交媒体数据进行交叉、稽核分析,用于指导研发、生产、销售等各业务部门的工作,这样在企业内部就可以形成一个完整的闭环,比较大大提高企业的竞争实力。
对于大数据分析支撑系统而言,这就需要其能够支持开放数据接口,对于Verint这样的平台而言,已经具备了这样的分析能力。所以,对于用户而言,当务之急还是能够充分重视Call Center等用户交互数据的价值,通过数据分析,改进企业业务流程,所谓大数据应用落地,不妨从Call Center音频数据开始!很见效,也很简单!尽快行动吧!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-06-052025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27