
大数据融合 将进一步开发物联网潜力
随着联网设备增多,消费者将会把目光转向商业,来提高互联性和用户体验。超前的用户体验意味着为这些设备创造出一条新的路—无缝互联。有了系统的整合,组织,安全存储和访问客户数据,品牌可以给生活带来更多宏伟的愿景。 随着互联网的不断发展,包括连接设备,它可以帮助工程师了解用户身份的演变,包括支付信息,生物和社会图形数据。通过其核心的身份,物联网才能真正改变我们的日常生活。
随着洛杉矶CES大会的落幕,局势渐渐明朗:2015年将成为物联网元年。从牙刷可以安排体检到瑜伽垫可以实时分析你的动作,今年的CES大会上,3000多家企业推出了超过2000件新产品。
对于物联网这个概念我们显然已经不陌生了。实际上,Gartner公司预测物联网设备的数量在2020年将增长到250亿。
由于便捷性的驱动和对曾经无法实现技术的迷恋,消费者将持续补充他们的电子产品仓库。随着联网设备增多,他们将会把目光转向商业,来提高互联性和用户体验。超前的用户体验意味着为这些设备创造出一条新的路—无缝互联。
现在可以编程让咖啡机在特定时间制作好咖啡。咖啡机可以和用户的床垫相连,感知到她起床并发送消息到手机上询问今天想要哪种口味的咖啡,未来还会在所用咖啡豆储存量不足时自动从亚马逊订购。
随着智能设备带来指数型增长的用户数据,企业必须重新思考储存、整理、利用它们的方法。实时处理和分析将成为常态,没有到位的基础去处理结构化和非结构化的数据,将落后于人。那么,IT和市场精英们到底该不该在物联网领域占领先机呢?
聚焦数据融合同一性是解锁物联网真正潜力的关键通过尝试将所有数据点的产生从设备回到从用户身份上,企业将能够为用户个人创造出真正个性化定制的体验。这种单个用户身份数据的调和和属性可以让用户的牙刷顺利和她的手机“交流”。
如果没有一个明确的系统适当的来给用户个人记录附加信息,数据只能是碎片式的,本质上是没用的。如果每个设备上获取的数据点都封装在一个独立的库里,用户体验将脱节得越来越严重。
企业保持数据整洁、有序、从连接的第一点到用户身份的附带是最好的方法。这个过程从注册开始。当用户从注册开始,即使是在传统网站注册或是通过社交账户登陆的,用户记录就必须开始。
从这点来说,企业需要记录用户的任何行为。它与用户身份相连接,使设备能够知晓用户偏好并和别的设备进行交流。
例如,如果一个人买了三星手机,他就成了三星生态系统中的一环。如果用户把手机当成智能控制中心来控制智能电视、远程洗衣、通过第三方程序发送文件到无线打印机,用户可以根据第一次登入信息用相同的登录证书来做到这些。
所有数据点都能够聚合和转回用户记录,企业用此来建立唯一的1:1的用户体验。
维护统一数据库
除了确保所有返回的数据点都归于用户记录之外,企业必须确保他们有足够安全的“房子”来存储这些数据。利用动态数据库,超越用户基本属性,使建立精确的客户档案和吸引人的用户体验成为现实,让企业投入巨资创造连接的设备。
一种先进的数据库建立在一个动态模式上,可以很容易以优化的方式地处理大量非结构化的用户数据。当用户确定需要此项业务时,客户数据被自动索引。这些信息在一个有组织、易于浏览的方式中非常有用,使营销人员能够针对用户量身定制,并针对他们行动。
有了系统的整合,组织,安全存储和访问客户数据,品牌可以给生活带来更多宏伟的愿景。 随着互联网的不断发展,包括连接设备,它可以帮助工程师了解用户身份的演变,包括支付信息,生物和社会图形数据。通过其核心的身份,物联网才能真正改变我们的日常生活。
毕竟,如果不能共同工作,那数十亿智能设备的目的是什么呢?没有数据融合,物联网只是纸上谈兵。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28