京公网安备 11010802034615号
经营许可证编号:京B2-20210330
DBA技能需紧跟大数据技术发展变化
新技术正在改变数据处理现状。尽管无模式NoSQL、Hadoop平台及其他相关工具越来越流行,但是传统数据库管理的变化可能并不大。然而在许多公司部署了基于这些技术的系统之后,一些新技术很可能会给数据库管理员(DBA)带来压力。DBA安心扮演“数据库模式(schema)管理者”的时间越来越少。
Caserta Concepts LLC是纽约一家专注于数据仓库和大数据部署的咨询与培训服务公司,公司总裁JoeCaserta对TechTarget记者说:“转变显然正在发生,但是它对于DBA的影响并没有想象中那么大。在传统企业数据部门中,DBA的职责仍然是管理长期以来围绕熟悉的SQL建立和运行的关系型数据库和数据仓库。”
然而,开发者在数据设计方面受到的影响越来越大,Caserta认为这种变化将促使一些DBA寻求丰富自己的技能。
有些东西在变,有些东西没有变
例如,开发者现在可以启动一些不使用数据库模式的Hadoop和NoSQL项目,这种现象代表了企业开发方式的一种转变。即便如此,有一些公司仍然很可能继续创建参考数据模型。虽然这些建模工作可能由企业架构师或数据架构师完成,但是Caserta指出,一些DBA也可以参与建模,所以他们需要学习NoSQL系统的工作原理。
“他们会使用不同的工具和不同的建模策略。我们仍然需要一些人来处理这些模型。我们也需要一些了解如何管理这些新数据库的人员。”Caserta说。
要想胜任后一种工作,则必须经过一些新培训:那些通过Oracle数据库认证的DBA未必就知道如何创建和设计一个Cassandra数据库。Caserta说:“一般DBA要求掌握的方法都必须重新学习。管理Hadoop集群的能力也会成为DBA的一项重要技能。通常,他们还需要学习如何在没有模式的数据库保存数据。”
灵活性的代价是什么?
MullinsConsulting公司总裁及首席咨询师Craig Mullins指出,NoSQL流行的前提就是能够简化一些DBA的学习过程。它并不是一些人想象的新事物。例如,面向大型主机的VSAM文件技术与新的键值数据存储之间有着明显的相似性。
但是,它们之间有一些本质区别。NoSQL软件提供的灵活性也有一定的代价,因为它实现数据完整性的难度更大了。但是,对于现在许多公司的Web应用程序而言,完整性优先级不如数据灵活性高。对于DBA而言,最大挑战是适应设计与开发风格的变化。
Mullins有30多年数据管理经验,撰写出版了图书《DBA修炼之道:数据库管理员的第一本书》。他说:“有一些DBA的适应能力强于其他人。过去20年里我们见过许多这样的例子。”
Mullins指出,在许多组织中,DBA总是需要管理多个关系型数据库系统。有这种技能的DBA应该研究NoSQL方法,以便在公司需要使用NoSQL产品时成为指导公司的第一线人员。
Mullins补充说,数据模式定义可能会越来越少,但是系统可用性和理解数据在各个节点的分布方式会变得越来越重要。
DBA的甜蜜时光到头了吗?
事实上,数据管理专家联盟DAMA International主席Sue Geuens认为,新的数据架构让DBA有机会扩大自己在公司中影响力。Geuens在南非约翰尼斯堡工作,是一家SAP软件和服务提供商EPI-USE SystemsLtd.的数据服务主管。她说:“DBA一直以来都被视为一些待在角落里默默监控数据库服务器运行状态的技术极客。我认为DBA已经厌倦了被贴上这样的标签。”
Geuens指出,我们很可能会在将来看到不同类型的DBA,有一些继续坚持从事传统技术与管理工作,而另一些则会努力学习管理大数据的新技术和工具。她说:“我们将看到新的DBA职业头衔,也会看到比现在更加专注于关系数据库的专业头衔。”
正如Geuens所强调的,这并不是DBA第一次增加新技能,他们本身就已经包含很多的职能。他们的技能包括建模、绩效管理和基础管理,而且每一种数据库品牌的专业深度又会进一步增加这个职业的复杂度。
这些专业知识可能就意味着薪资的提升。例如,TechTarget 2014 IT薪资与职业调查显示,近期涨幅居前的数据库管理员平均部薪资为115,630美元。年度增长率达到22%。
著名保险公司MetLife的数据库专家Greg Novikov在10月份波士顿的MongoDB Days 2014活动上指出,接触NoSQL数据库这样的新技术确实要求DBA调整自己的思考方式。但是它在一定程度上也会给DBA带来更丰厚的回报。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27