
DBA技能需紧跟大数据技术发展变化
新技术正在改变数据处理现状。尽管无模式NoSQL、Hadoop平台及其他相关工具越来越流行,但是传统数据库管理的变化可能并不大。然而在许多公司部署了基于这些技术的系统之后,一些新技术很可能会给数据库管理员(DBA)带来压力。DBA安心扮演“数据库模式(schema)管理者”的时间越来越少。
Caserta Concepts LLC是纽约一家专注于数据仓库和大数据部署的咨询与培训服务公司,公司总裁JoeCaserta对TechTarget记者说:“转变显然正在发生,但是它对于DBA的影响并没有想象中那么大。在传统企业数据部门中,DBA的职责仍然是管理长期以来围绕熟悉的SQL建立和运行的关系型数据库和数据仓库。”
然而,开发者在数据设计方面受到的影响越来越大,Caserta认为这种变化将促使一些DBA寻求丰富自己的技能。
有些东西在变,有些东西没有变
例如,开发者现在可以启动一些不使用数据库模式的Hadoop和NoSQL项目,这种现象代表了企业开发方式的一种转变。即便如此,有一些公司仍然很可能继续创建参考数据模型。虽然这些建模工作可能由企业架构师或数据架构师完成,但是Caserta指出,一些DBA也可以参与建模,所以他们需要学习NoSQL系统的工作原理。
“他们会使用不同的工具和不同的建模策略。我们仍然需要一些人来处理这些模型。我们也需要一些了解如何管理这些新数据库的人员。”Caserta说。
要想胜任后一种工作,则必须经过一些新培训:那些通过Oracle数据库认证的DBA未必就知道如何创建和设计一个Cassandra数据库。Caserta说:“一般DBA要求掌握的方法都必须重新学习。管理Hadoop集群的能力也会成为DBA的一项重要技能。通常,他们还需要学习如何在没有模式的数据库保存数据。”
灵活性的代价是什么?
MullinsConsulting公司总裁及首席咨询师Craig Mullins指出,NoSQL流行的前提就是能够简化一些DBA的学习过程。它并不是一些人想象的新事物。例如,面向大型主机的VSAM文件技术与新的键值数据存储之间有着明显的相似性。
但是,它们之间有一些本质区别。NoSQL软件提供的灵活性也有一定的代价,因为它实现数据完整性的难度更大了。但是,对于现在许多公司的Web应用程序而言,完整性优先级不如数据灵活性高。对于DBA而言,最大挑战是适应设计与开发风格的变化。
Mullins有30多年数据管理经验,撰写出版了图书《DBA修炼之道:数据库管理员的第一本书》。他说:“有一些DBA的适应能力强于其他人。过去20年里我们见过许多这样的例子。”
Mullins指出,在许多组织中,DBA总是需要管理多个关系型数据库系统。有这种技能的DBA应该研究NoSQL方法,以便在公司需要使用NoSQL产品时成为指导公司的第一线人员。
Mullins补充说,数据模式定义可能会越来越少,但是系统可用性和理解数据在各个节点的分布方式会变得越来越重要。
DBA的甜蜜时光到头了吗?
事实上,数据管理专家联盟DAMA International主席Sue Geuens认为,新的数据架构让DBA有机会扩大自己在公司中影响力。Geuens在南非约翰尼斯堡工作,是一家SAP软件和服务提供商EPI-USE SystemsLtd.的数据服务主管。她说:“DBA一直以来都被视为一些待在角落里默默监控数据库服务器运行状态的技术极客。我认为DBA已经厌倦了被贴上这样的标签。”
Geuens指出,我们很可能会在将来看到不同类型的DBA,有一些继续坚持从事传统技术与管理工作,而另一些则会努力学习管理大数据的新技术和工具。她说:“我们将看到新的DBA职业头衔,也会看到比现在更加专注于关系数据库的专业头衔。”
正如Geuens所强调的,这并不是DBA第一次增加新技能,他们本身就已经包含很多的职能。他们的技能包括建模、绩效管理和基础管理,而且每一种数据库品牌的专业深度又会进一步增加这个职业的复杂度。
这些专业知识可能就意味着薪资的提升。例如,TechTarget 2014 IT薪资与职业调查显示,近期涨幅居前的数据库管理员平均部薪资为115,630美元。年度增长率达到22%。
著名保险公司MetLife的数据库专家Greg Novikov在10月份波士顿的MongoDB Days 2014活动上指出,接触NoSQL数据库这样的新技术确实要求DBA调整自己的思考方式。但是它在一定程度上也会给DBA带来更丰厚的回报。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28