
大数据时代下的电商营销怎么玩_数据分析师
当我们细细品味去年阿里双11取得571亿成绩的同时,不难发现,中国电子商务的市场份额正在向头部靠拢。不管承认与否,市场份额向寡头聚集说明电商行业的垄断风险越来越高。垄断是创新的杀手,如果中国的电子商务只有在天猫、京东这样超级平台上才能玩,这不得不说是一种悲哀。
为何大部分独立电商都面临生存危机?这个问题与产品、营销、营运等诸多因素关联。本文试图从大数据与电商营销层面去做一些思考。
大数据营销的核心
独立电商正在面临前所未有的营销挑战,这种挑战突出体现在三个方面。首先,营销成本越来越高,获客成本居高不下。成本高企的主要因素是媒体对定价权的掌握,以及电商巨头对资源的垄断;其次,随着媒体碎片化越来越严重,营销管理效率受到挑战,机会成本越来越高。电商在找到适合自己的媒体之前,需要一个不小的试错成本和时间积累;第三,促销竞争越来越激烈,用户忠诚度越来越低。一个同行的促销就轻易把用户给挖走,不动用特殊优惠难以触动沉睡的老用户。以往期望有高二购率的高举高打营销模式日渐式微。
电商营销的关键要素,在于营销渠道的选择、营销效率的管控和营销规模的可放大性。不断会有新的渠道出现,然而这个渠道是不是一个优质渠道,主要体现在是否可以达到效率与规模的平衡。
大数据正是这样一个工具,帮助电商进行管控与计算,平衡效率与规模。大数据在电商营销中的应用,核心是做数据资产的保值和增值。大体可分为CRM数据、访客数据和第三方数据三类,数据规模依次呈几何级数递增。所谓保值,是练内功,通过数据发现消费规律,并在此基础上对用户细分和聚类,用适合的工具与用户交流其关心的内容,最终实现用户的转化与再转化;所谓增值,是走出去,基于对自身用户的持续画像,以此在外网寻找“有缘人”,故增值的核心是数据个性绽放,业务需求匹配。不论保值还是增值,应注重积累和持续,而非短平快;注重价值规律由内向外发掘,不同层次的差异化和递进关系,而非一刀切。
大数据与网站优化
电商营销,转化率是关键,提升站内转化率是优化广告效果的基础。电商网站优化的核心KPI就是看转化率是否得到提高、转化成本是否可控。在这一块,美国的Amazon是行业的标杆。Amazon网站上,有超过35%的销售来自于站内推荐系统。推荐引擎是大数据的典型应用,其原理是追踪每一个访客的站内访问行为,并建立推荐模型,预测该用户可能感兴趣购买的商品,然后通过推荐模块在网站页面输出展示这些商品,从而吸引用户点击并购买。
大数据不仅可以洞察消费者的购买兴趣,还可以帮助网站开发者去做UI/UE的优化。通过大数据AB测试,可以了解页面布局和功能设计对于二跳率、转化率的影响,从而避免主观判断UI/UE的优劣,通过数据来持续优化UI/UE。在美国,有专门做AB测试的大数据公司,已经拿到了多轮融资,正在准备上市。在中国,目前电商的接受程度还非常有限,还处于方兴未艾的阶段。
大数据与会员营销
传统的电商CRM,通过RFM模型对已购买顾客进行分组和差异化的营销互动。而事实上,除了已购买顾客,还有大量的到访顾客、兴趣顾客、加入购物车未提交顾客等等,这些潜在购买顾客的数量级可能是已购买顾客的上万倍甚至更高。在大数据时代之前,我们对于这样一个庞大的潜在顾客群是无法管理和营销互动的。大数据使CRM的概念发生了升级,变为VRM(访客关系管理)。
大数据应用将所有网站的到访用户都管理起来,从访问到注册、加入购物车、支付、购买等环节,建立一个客户转化销售漏斗,这是进行广义会员营销的基础。同时,大数据的引入,使得传统的EDM、SMS变得更加智能化、高效率。VRM的思想,是以大数据为基础的数据库营销升级版,这种升级,体现在基础数据、营销内容、触达渠道、评价体系等多个方面。建立符合自身特点的VRM体系,是电商深入开展数据库营销的基础。
大数据与媒体广告
展示广告的程序化购买,是未来的媒体采购主流模式。程序化购买的发展,离不开大数据应用的普及。从媒体端的资源整合,到第一、第二、第三方数据的收集管理,再到智能竞价、动态创意、智能LP的应用,大数据是必要条件和催化剂。
最近一两年程序化购买的发展速度非常快,从单纯的公开市场竞价DSP,到私有化竞价市场PMP的出现,再到移动广告的程序化购买。如此快速的广告采购方式升级,是很多电商所不适应的。反过来看,这些新的媒体采购方式,虽然从理论上能够帮助到电商提升效率、降低成本,而事实上电商在程序化购买的实施过程中,实际效果与其期望值还有不小的距离。
电商要利用大数据做好媒体广告程序化购买,离不开以下几点:
1、要有自身的大数据营销规划和架构,具有大数据营销的技术储备和思想意识;
2、选择DSP供应商要慎重,不能偏听偏信,前期最好多选几家,是骡子是马,拉出来溜溜;
3、科学设定程序化购买的KPI,不能简单照搬其它渠道的KPI要求;
4、合理设定程序化购买项目的启动和评价周期,注重结果,更注重过程;
5、培养自己的大数据营销人才,深入进行大数据洞察,而不是简单外包,浅尝辄止。
大数据与电商营销生态圈
电商营销生态圈,可以看做是媒体、流量、用户、顾客、回头客这几个要素之间的闭环。每个要素,都涉及到一系列的产品和工具。大数据时代之前,我们也有报表,也能看到这些要素之间的递进关系。而大数据时代的来临,仿佛让我们配备了高倍显微镜,能够对这几个要素的结构和流动看的更加清晰,同时大数据又构建的新的游戏规则,使得电商能够用全新的视角和方法来开展新电商营销工作。
大数据让电商营销生态圈变得更加绚丽,对电商营销人的学习能力和执行能力提出了挑战。面对这种挑战,迎头而上是唯一的选择。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10