京公网安备 11010802034615号
经营许可证编号:京B2-20210330
橱柜企业引入大数据 个性定制可实现规模生产
在数字化时代,中国制造行业面临着转型,数字化生产推动第三次工业革命的时代即将到来。在不远的将来,借助新材料和信息技术的应用,大多数产品都可经过计算机设计,然后通过3D打印机“打印出来”。一个不限地点、无需工人、真正实现个性定制化的时代即将降临。在这股全球性“信息化大数据”浪潮中,中国定制橱柜行业自然不能落于人后,要积极通过大数据管理带来的变革,将定制带入大众化普及时代。
规模化与个性化矛盾突出
现今普通消费者购买的商品房都不大,对于合理优化和利用住宅空间有迫切的需求,只有定制才能满足。所以,这是一个对全屋定制家具有强烈需求的市场。然而,即使到现在,定制仍与高端、与小规模生产挂钩,尤其是橱柜这类大宗货物。原因在于,在生产环节,传统定制模式生产效率低、材料浪费高,难以量产;在接单环节,定制需要设计师针对消费者个性需求进行设计,人力、时间成本高。上述两个环节因素的制约,导致定制橱柜价格居高不下,规模生产与个性生产成为一对主要矛盾。
导入市场大数据管理系统
对于坚持定制路线的橱柜企业而言,要发展就必须解决个性定制与规模生产的冲突。其解决办法是导入大数据管理系统,一个是生产系统,另一个是销售设计、分析系统。
橱柜企业一般秉承先设计销售、再生产的商业模式。为解决传统设计人力、时间成本高的问题,橱柜企业一方面可对市场上的户型数据进行收集,梳理出最基本的户型。另一方面通过在与消费者沟通时,收集信息,例如房屋朝向、户型、业主身高、颜色喜好与最终选定的方案等,录入信息库。如此一来,当新的消费者进店后,设计师就可很快在已有户型中挑选最贴近的房型,进行微调后开始方案设计。
生产环节效率得大幅提升
而在方案确定后,整体橱柜的每一个部件都会拆分、转化为一个又一个的数字,被传送到云数据库订单中心。用大数据的方式,指挥每一台机器生产。在此模式下,橱柜企业的生产效率得以大大提升,材料利用率提升,出错率大幅降低。在大数据管理的统领下,个性化定制与规模化生产互为补充、共同增长,满足市场对定制橱柜的海量需求。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20