
数据分析师属于哪种岗位
数据分析师属于哪种岗位?数据行业从广义上讲可以分为以下几个职位:
1、数据分析师
数据分析师更注意是对数据、数据指标的解读,通过对数据的分析,来解决商业问题。主要有以下几个次层次:
1)业务监控 2)建立分析体系: 3)行业未来发展的趋势分析主要技能要求:
数据库知识(SQL至少要熟悉)、基本的统计分析知识、EXCEL要相当熟悉,对SPSS或SAS有一定的了解,对于与网站相关的业务还可能要求掌握GA等网站分析工具,当然PPT也是必备的。
2、数据挖掘工程师
数据挖掘工程师更多是通过对海量数据进行挖掘,寻找数据的存在模式、或者说规律,从而通过数据挖掘来解决具体问题。数据挖掘更多是针对某一个具体的问题,是以解决具体问题为导向的。 主要技能要求:
1)数据库必须精通。 2)必须要会成熟的数据挖掘工具、数据挖掘算法。
3、数据建模师
数据建模师这个职位与数据挖掘工程师还是有本质区别的。数据建模师,更多偏向于中、小数据量,而且其使用更多更多是统计学的方法,而数据挖掘中的例如:决策树、神经网络、SVM等在这里是根据不会涉及的。
新进入数据行业的同学,可以根据自己的背景背景选择相应的职位,学数据、统计学的朋友更多可以偏向于建模师,而计算机特别是写编程出现和同学,可以走数据挖掘工程师,也许适应性更好,但这不是绝对的。
数据分析师的职位级别划分
不同公司对数据分析师的职位划分骚有不同,在一些中小型企业,没有成立独立的数据中心前,数据分析的相关职位往往是在譬如市场部、运营部这些部门之下,通常数据分析成员在2-4人不等。对于一些大型企业,有独立的数据部门的企业,其数据分析团队人员则是十到百人不等,其职位头衔有通俗的总监、经理、主管划分,也有助理、资深、专家之类的划分。
数据分析师这个职位目前呈现是二八原则,好的数据分析师的收入是非常高,差不多平均水平在13k左右,但是处境不好的数据分析人员只能拿到跟内勤同等收入的水平。
传统行业的数据分析师差不多只能拿到3-5K水平,这些大多数是处在数据处理、整理数据为统一口径的数据农民工,一般只接触的工具只有EXECEL,这类岗位三大招聘网站上有很多的传统行业里都有招这些数据分析专员,你可以对应看一下;第二阶段是刚刚进入互联网数据分析师行业的初中级数据分析师,待遇范围一般在5-8K,一般承担是从数据库里取到数据进行初级数据分析并形成报告,一般接触到的工具有SPSS、SQL等,比如@数据分析微招聘,185号岗位,这是一家公司需要大量招聘初级的数据分析师进行长期的培养广告公司。
编者对于数据分析师的理解给大家分享一下,一边是人工智能,这块我没有接触的太多就不说了,不过这块也是热门的职业;另一边是我们说的数据分析相关的职业,如果从行业分的话有传统行业与高利润行业比如互联网行业、金融、通迅等行业这些行业只要你的能力出色给的待遇不会太差,同时如果我们要换工作,也可以轻松的转向。
大多数的互联网行业特别是电商行业对于数据分析师这块还是比较看重,主要的原因其主要的资产除了产品、人员就是长期积累的数据而这些海量的数据已经不能用人工经验来还原业务,这就需要数据分析师对于数据进行归纳与还原商业规则与逻辑,一般主要涉及商业分析、用户分析、产品分析、运唯支撑等这几块;从中国统计网对于300多个岗位进行归纳后,我们发现,要求几乎雷同,同时也说明这个职业的互通性很强,说白了就是换个行业都可以在职场上存活下来;一般需要以下几个要求:
1、数据分析经验;
2、商业数据敏感度;
3、基本工具(SAS、SPSS、SQL、EXECEL等);
4、建模;
5、知识点(统计学、会编程);
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13