
大数据时代,越精准越贴心
这次,在微信朋友圈上刷屏的不是“代购”,而是“微信团队”。
它先是在所有人朋友圈里推送了一条打着“推广”标签的消息,欲说还休地贴出了六张图,每张图上都是黑底白字一段话。图上的信息连起来,就是告诉你,广告可恶,是因为“它不懂你”, 并且温情地说:“我们试着,做些改变。”
1月25日晚上8点45分左右,真正的商业广告在朋友圈出现了。但是,谁也说不好微信广告的首位客户是谁。因为,不同的人,在微信朋友圈上看到了不同的品牌—“可口可乐”、“Vivo智能手机”或者“宝马中国”。还有一部分人,甚至什么广告也没看到。
在朋友圈上看到了什么,甚至成为人们自我调侃的一种新方式。没有刷出宝马广告的人,自嘲道:“看来我穷爆了这件事,已经惊动了系统后台。”
这可能还真不是句玩笑话。
互惠互利的精准投放
甫一亮相,就引爆话题。微信朋友圈广告算是得到了一个漂亮的开场。
其实,这次因朋友圈广告而被炒得火热的“信息流广告”或“精准投放”概念,对广告从业人员来说,已经不是什么新鲜事。
摩比万思是一家专注于移动RTB(程序化购买广告技术)广告的研发运营和大数据整合分析的公司。该公司首席技术官张杰告诉科技日报记者,这次微信朋友圈广告属于信息流广告,也是原生广告的一种。这类广告不是出现在特定广告位,而是和内容完美融合,无缝嵌入资讯、社交等信息流中,降低对用户的打扰。根据企鹅智酷发布的《朋友圈广告首份用户调研报告》,有72.1%的用户在其他社交产品见过信息流广告。
那么,为何我们同在一个朋友圈,你看到了宝马的“悦是如期而至”,而我却只得到了一张四图拼接的可口可乐?
张杰说,背后逻辑可能是大数据分析。用户上网,就会留下网络足迹。智能分析系统可以结合用户浏览行为,根据这些足迹绘出“用户画像”,并进一步判断用户的人口统计学属性。基于长时间的多点采样和分析,用户数据库中呈现的某匿名用户数据可能就会透露出这样的信息:用户兴趣、活跃地点、上网习惯、用户性别和年龄区间……
“不过微信能够拿到的数据和我们传统方式所能拿到的并不一样,这就是微信品牌的独特之处。他们或许能有更丰富的数据维度来优化用户画像,比如能够知道用户关注什么、用户的社交网络等,从而制定出相应的广告投放策略。”基于数据的精准投放,理想状态是让广告从过去的“一打一片”,变成现在的“一枪一个”。用户躺着也中“枪”,而且仔细再一看,还打得挺准—这正是用户自己想要看到的内容。
张杰强调,精准投放是一种“互惠互利”。用户免于垃圾广告的打扰,获取自己感兴趣的内容,广告商还能更省钱。从他们的经验来看,以App的推广为例,经数据优化后进行投放,广告的点击率、App的下载量、下载之后的留存率、活跃度等数字均会上升。“广告点击率上升,这也说明我们推给用户的东西,恰好是用户需要的。”在他看来,“精准”意味着“高效”和“贴心”。
免费背后的“野心”
在拥抱大数据时代下的“贴心”的同时,也有人对此心存疑虑。
在广州生活的颜嘉(化名)有着近20年网龄,热衷于体验当下各种热门的互联网应用。刷微博、聊微信,上大众点评“签到”……已经成为他日常生活中的一部分。“互联网上本就没有隐私可言,在提交每一项个人信息前,我都考虑了可能带来的风险,但目前用个人信息换来的用户体验还远谈不上大数据所应有的智能化,包括这次朋友圈推送的广告”。
密切关注大数据背景下数据挖掘和精准营销的北京爱咔咔信息技术有限公司CEO邬国锐对此表达了相同的看法。“就朋友圈目前向不同人群推送的3个广告,看不出细分的依据,也谈不上精准。”
相较于颜嘉对互联网应用的热情,邬国锐的态度更为保守。他从来不使用商场、咖啡屋等公共场所免费提供的WiFi,“免费的其实是最贵的”。这个“贵”指的就是出卖了个人的信息。据他了解,有公司通过搜集用户接入公共场所WiFi的频次等信息来分析用户常去的地点,进而判断用户的消费行为、喜好,将相关的数据用作商业用途。
在邬国锐看来,一些看似新潮好玩的互联网应用背后,有着搜集大量用户图像、音频等数据进行二次利用的“野心”。许多用户在上传照片、语音聊天时,并没有意识到个人隐私泄露的风险。“一些看似毫无关联的数据叠加在一起,可以精准的定位到某个具体的人,大数据应用实质上是一把双刃剑,用户在获得更好体验的同时面临个人隐私被侵犯的风险”。
不过,张杰觉得“侵犯隐私”这顶帽子扣得有点冤:“我们进行数据分析的目的不是要定义你这个人,只是想匹配用户的具体兴趣和需求。所有的分析都是非实名化的。我们广告商也是在合法合规的框架下做这件事情。”他表示,对微信来说,它确实能拿到更多用户属性数据。“但作为一个大公司,他们会更加自律和规范。”
不过,如果用户对所谓的“精准”不买账,也可以试着躲一躲。张杰支招道,用户下载App时,可以对App的访问权限进行限制,或者干脆不使用可能泄露信息的App。
大数据时代,企业收集和利用用户个人信息的方式更隐蔽。目前法律层面对个人隐私的界定不够清晰,企业在灰色地带“掘金”的成本很低。一旦用户意识到个人隐私被侵犯,举证和追溯的成本高昂。“因此,迫切需要从立法层面加强对个人隐私的保护,同时,相关企业应做到像谷歌所提倡的"不作恶"(Do not be evil)。”邬国瑞表示。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30