京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代,越精准越贴心
这次,在微信朋友圈上刷屏的不是“代购”,而是“微信团队”。
它先是在所有人朋友圈里推送了一条打着“推广”标签的消息,欲说还休地贴出了六张图,每张图上都是黑底白字一段话。图上的信息连起来,就是告诉你,广告可恶,是因为“它不懂你”, 并且温情地说:“我们试着,做些改变。”
1月25日晚上8点45分左右,真正的商业广告在朋友圈出现了。但是,谁也说不好微信广告的首位客户是谁。因为,不同的人,在微信朋友圈上看到了不同的品牌—“可口可乐”、“Vivo智能手机”或者“宝马中国”。还有一部分人,甚至什么广告也没看到。
在朋友圈上看到了什么,甚至成为人们自我调侃的一种新方式。没有刷出宝马广告的人,自嘲道:“看来我穷爆了这件事,已经惊动了系统后台。”
这可能还真不是句玩笑话。
互惠互利的精准投放
甫一亮相,就引爆话题。微信朋友圈广告算是得到了一个漂亮的开场。
其实,这次因朋友圈广告而被炒得火热的“信息流广告”或“精准投放”概念,对广告从业人员来说,已经不是什么新鲜事。
摩比万思是一家专注于移动RTB(程序化购买广告技术)广告的研发运营和大数据整合分析的公司。该公司首席技术官张杰告诉科技日报记者,这次微信朋友圈广告属于信息流广告,也是原生广告的一种。这类广告不是出现在特定广告位,而是和内容完美融合,无缝嵌入资讯、社交等信息流中,降低对用户的打扰。根据企鹅智酷发布的《朋友圈广告首份用户调研报告》,有72.1%的用户在其他社交产品见过信息流广告。
那么,为何我们同在一个朋友圈,你看到了宝马的“悦是如期而至”,而我却只得到了一张四图拼接的可口可乐?
张杰说,背后逻辑可能是大数据分析。用户上网,就会留下网络足迹。智能分析系统可以结合用户浏览行为,根据这些足迹绘出“用户画像”,并进一步判断用户的人口统计学属性。基于长时间的多点采样和分析,用户数据库中呈现的某匿名用户数据可能就会透露出这样的信息:用户兴趣、活跃地点、上网习惯、用户性别和年龄区间……
“不过微信能够拿到的数据和我们传统方式所能拿到的并不一样,这就是微信品牌的独特之处。他们或许能有更丰富的数据维度来优化用户画像,比如能够知道用户关注什么、用户的社交网络等,从而制定出相应的广告投放策略。”基于数据的精准投放,理想状态是让广告从过去的“一打一片”,变成现在的“一枪一个”。用户躺着也中“枪”,而且仔细再一看,还打得挺准—这正是用户自己想要看到的内容。
张杰强调,精准投放是一种“互惠互利”。用户免于垃圾广告的打扰,获取自己感兴趣的内容,广告商还能更省钱。从他们的经验来看,以App的推广为例,经数据优化后进行投放,广告的点击率、App的下载量、下载之后的留存率、活跃度等数字均会上升。“广告点击率上升,这也说明我们推给用户的东西,恰好是用户需要的。”在他看来,“精准”意味着“高效”和“贴心”。
免费背后的“野心”
在拥抱大数据时代下的“贴心”的同时,也有人对此心存疑虑。
在广州生活的颜嘉(化名)有着近20年网龄,热衷于体验当下各种热门的互联网应用。刷微博、聊微信,上大众点评“签到”……已经成为他日常生活中的一部分。“互联网上本就没有隐私可言,在提交每一项个人信息前,我都考虑了可能带来的风险,但目前用个人信息换来的用户体验还远谈不上大数据所应有的智能化,包括这次朋友圈推送的广告”。
密切关注大数据背景下数据挖掘和精准营销的北京爱咔咔信息技术有限公司CEO邬国锐对此表达了相同的看法。“就朋友圈目前向不同人群推送的3个广告,看不出细分的依据,也谈不上精准。”
相较于颜嘉对互联网应用的热情,邬国锐的态度更为保守。他从来不使用商场、咖啡屋等公共场所免费提供的WiFi,“免费的其实是最贵的”。这个“贵”指的就是出卖了个人的信息。据他了解,有公司通过搜集用户接入公共场所WiFi的频次等信息来分析用户常去的地点,进而判断用户的消费行为、喜好,将相关的数据用作商业用途。
在邬国锐看来,一些看似新潮好玩的互联网应用背后,有着搜集大量用户图像、音频等数据进行二次利用的“野心”。许多用户在上传照片、语音聊天时,并没有意识到个人隐私泄露的风险。“一些看似毫无关联的数据叠加在一起,可以精准的定位到某个具体的人,大数据应用实质上是一把双刃剑,用户在获得更好体验的同时面临个人隐私被侵犯的风险”。
不过,张杰觉得“侵犯隐私”这顶帽子扣得有点冤:“我们进行数据分析的目的不是要定义你这个人,只是想匹配用户的具体兴趣和需求。所有的分析都是非实名化的。我们广告商也是在合法合规的框架下做这件事情。”他表示,对微信来说,它确实能拿到更多用户属性数据。“但作为一个大公司,他们会更加自律和规范。”
不过,如果用户对所谓的“精准”不买账,也可以试着躲一躲。张杰支招道,用户下载App时,可以对App的访问权限进行限制,或者干脆不使用可能泄露信息的App。
大数据时代,企业收集和利用用户个人信息的方式更隐蔽。目前法律层面对个人隐私的界定不够清晰,企业在灰色地带“掘金”的成本很低。一旦用户意识到个人隐私被侵犯,举证和追溯的成本高昂。“因此,迫切需要从立法层面加强对个人隐私的保护,同时,相关企业应做到像谷歌所提倡的"不作恶"(Do not be evil)。”邬国瑞表示。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA一级知识点汇总手册 第二章 数据分析方法考点7:基础范式的核心逻辑(本体论与流程化)考点8:分类分析(本体论核心应用)考 ...
2026-02-18第一章:数据分析思维考点1:UVCA时代的特点考点2:数据分析背后的逻辑思维方法论考点3:流程化企业的数据分析需求考点4:企业数 ...
2026-02-16在数据分析、业务决策、科学研究等领域,统计模型是连接原始数据与业务价值的核心工具——它通过对数据的规律提炼、变量关联分析 ...
2026-02-14在SQL查询实操中,SELECT * 与 SELECT 字段1, 字段2,...(指定个别字段)是最常用的两种查询方式。很多开发者在日常开发中,为了 ...
2026-02-14对CDA(Certified Data Analyst)数据分析师而言,数据分析的核心不是孤立解读单个指标数值,而是构建一套科学、完整、贴合业务 ...
2026-02-14在Power BI实操中,函数是实现数据清洗、建模计算、可视化呈现的核心工具——无论是简单的数据筛选、异常值处理,还是复杂的度量 ...
2026-02-13在互联网运营、产品迭代、用户增长等工作中,“留存率”是衡量产品核心价值、用户粘性的核心指标——而次日留存率,作为留存率体 ...
2026-02-13对CDA(Certified Data Analyst)数据分析师而言,指标是贯穿工作全流程的核心载体,更是连接原始数据与业务洞察的关键桥梁。CDA ...
2026-02-13在机器学习建模实操中,“特征选择”是提升模型性能、简化模型复杂度、解读数据逻辑的核心步骤——而随机森林(Random Forest) ...
2026-02-12在MySQL数据查询实操中,按日期分组统计是高频需求——比如统计每日用户登录量、每日订单量、每日销售额,需要按日期分组展示, ...
2026-02-12对CDA(Certified Data Analyst)数据分析师而言,描述性统计是贯穿实操全流程的核心基础,更是从“原始数据”到“初步洞察”的 ...
2026-02-12备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09在日常办公数据分析中,Excel数据透视表是最常用的高效工具之一——它能快速对海量数据进行分类汇总、分组统计,将杂乱无章的数 ...
2026-02-09