
大数据增长为数据存储系统带来新挑战
分析机构Gartner副总裁Donald Feinberg表示,数据存储的角色之所以会有所转变,其中一项因素就是数据不仅在数量上变多,而且日益复杂,对于5到10年前所设计出来的数据存储系统来说,就必须要能处理资源的多样性、复杂性、巨大的容量而且系统反应速度要即时等特性。而他认为,虽然大数据对不同产业都有不同的意义,但基本上,大数据代表的就是大量、复杂和非结构化的数据。
但是,对于擅长处理结构化数据的关联式数据库管理系统来说,是很难去处理大数据的。因此,Donald Feinberg表示,目前大部分的企业会特别打造一个空间或是平台来存放非结构化数据或是大数据。
应用大数据的来临,Donald Feinberg表示,未来逻辑数据存储的概念将会浮现,也就是将不同性质的数据存放在不同的数据库中,就可以用适当的工具来获取正确的资源,同时,逻辑数据存储会利用适当的后设数据连结所有数据存储系统中不同的数据。
Donald Feinberg也表示,有许多工具都是用来处理巨量而非结构化的数据,但是,将有很多应用程式是使用MapReduce技术开发。
数据存储厂商面临必须快速回应查询的挑战
大数据影响层面之广,IDC软件市场分析师锺翠玲表示,大数据对于各方厂商都是新的战场,其中也包含了存储厂商,像是EMC买下数据存储软件业者Greenplum就是一例。原因正是,她认为,数据存储的确是可应用大数据的主力。
不过,对数据存储厂商来说,还是有不少挑战存在,首当其冲的是,他们必须要强化关联式数据库的效能,增加数据管理和数据压缩的功能。
因为过往关联性数据库产品处理大量数据时的运算速度都不快,需要引进新技术来加速数据查询的功能。另外,数据存储的厂商也开始尝试不只采用传统硬盘来存储数据,像是使用快速闪存的数据库、闪存数据库等,都逐渐产生。
另一个挑战就是传统关联性数据库无法分析非结构化数据,因此,并购具有分析非结构化数据的厂商以及数据管理厂商,是目前数据存储大厂扩展实力的方向。
数据管理的影响主要是数据安全的考量。IDC软件市场分析师吴乃沛表示,大数据对于存储技术与资源安全也都会产生冲击。首先,快照、重复数据删除等技术在大数据时代都很重要,就衍生了数据权限的管理。
举例来说,现在企业后端与前端所看到的数据模式并不一样,当企业要处理非结构化数据时,就必须制定出是IT部门还是业务单位才是数据管理者。而吴乃沛表示,由于这牵涉的不仅是技术问题,还有公司政策的制定,因此界定出数据管理者是企业目前最头痛的问题。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13