
CDA Level Ⅱ:建模分析师。两年以上数据分析岗位工作经验,或通过CDA Level Ⅰ认证半年以上。在政府、金融、电信、零售、互联网、电商、医学等行业专门从事数据分析与数据挖掘的人员。在Level Ⅰ的基础之上深入掌握高级多元统计方法,并且拓展时间序列分析和主要数据挖掘的理论知识与业界运用;能够熟练使用SAS、R、Matlab和SPSS中至少一个专业统计软件实现相关算法;熟悉使用SQL访问企业级数据库;具有按照数据挖掘标准流程进行项目需求分析、数据验证、建模与模型评估的能力。
CDA Level Ⅱ培训课程安排
背景介绍
CDA Level Ⅰ为基础薄弱的学员提供了入行的机会,能够结合业务完成基本的数据分析并作出数据报告。但企业想要在竞争激烈的市场中胜出,决策的速度和反应的效率尤为重要。根据调查显示,75%的企业在面临拟定策略时,常常无法获得实时且有根据的决策信息。什么样的数据、要通过什么样的方法,才能快速便捷的提供对决策有价值的信息,是现代企业所面临最迫切性的问题。因此,在CDA Level Ⅰ的基础上,CDA Level Ⅱ(建模分析师)即为企业决策提供及时有效、易实现、可信赖的数据支持。
在建模分析师中,数据挖掘(Data Mining)技术无疑是他们最强有力的核心竞争力。数据挖掘强调与现有信息系统的整合,以提供决策者做决策时所需的情报,或转化成经营智慧,以作为调整营运策略方针的辅助工具。以顾客关系管理(CRM)为例,数据挖掘是整个顾客关系管理的核心。其不但可以准确的定位目标市场,进行精准营销,还可以帮助业务人员了解客户深层需求,针对大量客户进行客制化,也就是所谓的一对一营销。本课程的目的就是要针对数据挖掘整套流程,根据CDA Level Ⅱ大纲标准,以金融、电信、电商和零售业为案例背景,结合SAS Enterprise Miner和SPSS Moderler深入讲授数据挖掘的主要算法。并将Python语言和SQL进行有效的结合,讲授如何在实际工作中搭建数据挖掘环境,制定分类数据挖掘的标准流程,让学员胜任全方位的数据挖掘运用场景。
CDA LEVEL Ⅱ课程安排
项目名称 |
CDA Level Ⅱ建模分析师系统培训 |
时间 |
北京:2015年10月15-11月1日 八天 上海:2015年11月19-12月6日 八天
|
地点 |
面授班:北京,人大经济论坛教室 面授班:上海,人民广场教室 远程班:在线同步直播 |
价格 |
面授:7400元
远程:5500元
|
优惠 |
1. 全日制学生及CDA LEVEL Ⅰ老学员8折优惠(学生证证明文件) 2. 同一单位三人及以上报名9折优惠,五人及以上8折优惠 3. CDA LEVEL Ⅰ等级资格证书持有者立省1000元 4. 同时报名参加LEVELⅠ和LEVEL Ⅱ享受8折优惠。 点击查看LEVEL Ⅰ课程详情 以上优惠不可叠加! |
证书认证 |
1. 可申请报考《CDA LEVEL Ⅱ等级认证证书》(荐:含金量高)
2. 可申请工信部《数据分析师证书》(培训后即可得到) 以上双证皆自愿申请 |
现场班福利 |
全套视频资料,终身学习,在线答疑
午餐,咖啡茶歇,论坛币(1000个) |
学员对象:
1)各行业数据分析、数据挖掘从业者
2)金融、电信、零售、医学等各行业业务数据分析人员
3)政府事业单位大数据及数据挖掘项目人员
4)数据挖掘岗位就业、提拔涨薪、技能优化等从业人员
5)对数据挖掘感兴趣的各界人员
学员基础要求:
1)掌握CDA LEVEL Ⅰ大纲要求,CDA LEVEL Ⅰ详情:http://bbs.pinggu.org/thread-3419416-1-1.html
2)报名赠送《SAS初级视频》+《R语言及数据挖掘视频》,提前观看视频做好预习工作。自行安装好SAS软件(带有EM模块),SPSS Modeler,MySQL及R软件。R软件的下载网址为"http://www.r-project.org/";MySQL的下载网址为"http://www.mysql.com/。
课程收益
(1)了解什么是顾客关系管理;(2)了解顾客关系管理系统的架构及其组成元素;(3)了解如何利用顾客关系管理系统来进行营销活动;(4)了解什么是数据挖掘(Data Mining);(5)掌握数据挖掘技术的功能分类;(6)掌握数据挖掘技术的绩效增益;(7)了解数据挖掘技术的产业标准;(8)掌握如何利用数据挖掘技术来筛选关键变量(Key Attribute);(9)掌握如何利用数据挖掘技术来进行交叉销售(Cross-Selling);(10)掌握如何利用数据挖掘技术来评估客户的信用风险(Credit Risk); (11)了解如何利用数据挖掘技术来分析顾客行为、产生商业智慧并发展营销策略。(12)掌握如何使用数据挖掘工具SAS EM/SPSS Modeler/Python来完成上述的各项工作。(13)掌握MySQL等主流数据库的使用。(14) 构建易实施的MySQL和Python数据挖掘环境。(15)掌握构建信用打分卡的流程和Python语言脚本。
CDA Level Ⅱ培训课程大纲
详细大纲
见:http://cda.pinggu.org/view/4532.html
讲师简介李御玺,教授,国立台湾大学资讯工程博士,铭传大学资讯工程学系教授,铭传大学大数据研究中心主任,中华数据挖掘协会理事,云南财经大学信息学院客座教授,浙江大学城市学院客座教授,厦门大学数据挖掘中心顾问,中国人民大学数据挖掘中心顾问,IBM SPSS-China顾问,SAS-Taiwan顾问。在其相关研究领域已发表超过260篇以上的研究论文,同时也是国科会与教育部多个相关研究计划的主持人。
服务过的客户包括:中国工商局、中信银行、台新银行、联邦银行、新光银行、 新竹国际商业银行(现已并入渣打银行)、第一银行、永丰银行、远东银行、美商大都会人寿、嘉义基督教医院、台湾微软、零售业如赫莲娜(Helena Rubinstein)化妆品公司、特立和乐(HOLA)公司、航空公司如东方航空公司、中华航空公司、汽车行业如福特(Ford)汽车公司;政府行业如国税局等。
常国珍,曾为德勤管理咨询高级数据挖掘咨询顾问,SAS官方培训资深讲师,2014年SAS软件大赛判卷人,曾以数据挖掘工程师身份就职于亚信科技(中国)有限公司市场部。具有八年的数据挖掘实战经验,主攻分类模型,涉及客户精准营销、信用评估、价值提升、欺诈侦测和流失预警等数据挖掘主题,尤其熟悉银行个人客户精准营销的建模工作。
资格认证:SAS全球认证“Certified Statistical Business Analyst Using SAS 9 Regression and Modeling”、“Certified Advanced Programmer for SAS 9”。参与项目:1、某国有大型银行企业级模型试验室建设; 2、某国有大型银行企业级欺诈系统建设;3、某股份制大型银行信用卡部产品精准营销建模和行为信用评级模型优化工作; 4、某股份制大型银行零售业务部客户忠诚度提升项目。
CDA数据分析师LEVEL Ⅱ资格证书
(此证书为CDA协会颁发,人大经济论坛国内主办,全国统考,一年两次,此证书为CDA数据分析师唯一认证证书,可以作为企业事业单位选拔和聘用专业人才的任职参考依据。)
CDA考试安排:
1. 考试时间2015年6月28日
2. 考试内容:CDA LEVLE Ⅱ建模分析师大纲。
3. 报名费用:1500元/人。参加CDA系统培训学员费用为1000/人。
4. 其他:CDA考试一次不过可申请补考,补考费用为原价一半。证书3年审核一次。
5. 报考链接:http://cda.pinggu.org/cda_exam.html
国家工信部数据分析师证书
此证书参加CDA培训后随堂考试,通过即可获得,证书申请费用为400元。(可自愿申请)
报名流程
1.在线填写报名信息
2.给予反馈,确认报名信息
3.网上缴费
4.开课前一周发送电子版课件和教室路线图
微博关注:@CDA数据分析师_人大经济论坛
QQ交流群:274123859
微信订阅:CDA数据分析师
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22