京公网安备 11010802034615号
经营许可证编号:京B2-20210330
理性看待“大数据”热_数据分析师
理性看待“大数据”热
国务院发展研究中心技术经济研究部 田杰棠
继物联网、云计算之后,大数据已经成为当前信息技术产业最受关注的概念之一。面对社会各界纷纷关注的“大数据”热,应充分认识其内在机理及带来的挑战,进一步理清对策思路
种类繁杂、数量庞大的大数据,为我们更深入、更准确地认识和把握事物发展的内在规律提供了信息基础,其中蕴涵着非常大的潜在价值。这一点不仅是许多业内研究机构的共识,也已经在商业应用中得到了体现。
目前,大数据的应用已经有了许多典型案例,如IBM日本公司利用互联网搜索数据建立的经济指标预测系统,以及美国印第安纳大学利用谷歌公司提供的心情分析工具对道琼斯工业指数变化的预测,已经达到比较高的准确率。除了经济分析外,在农业、医药卫生、制造业等领域,也有一些成功应用大数据进行预测的案例。据美国麦肯锡公司预测,大数据将为美国医疗服务业每年带来3000亿美元的潜在增加值,为欧洲的公共管理每年带来2500亿欧元的潜在价值,为位置服务产业带来6000亿美元的潜在年收入。零售商充分利用大数据可实现运营利润增长60%,制造业充分利用大数据可降低设备装配成本50%。经合组织的一项最新研究成果还对互联网数据的市场价值进行了估计,佐证了大数据的巨大潜在价值。
相对而言,目前我国大数据产业还处于发展初期,市场规模仍然比较小,2012年仅为4.5亿元,而且主导厂商仍以外企居多。据预测,2016年我国大数据应用的整体市场规模将突破百亿元量级,未来将形成全球最大的大数据产业带。然而,相对于发展前景的乐观预测,我国发展大数据产业面临的现实挑战更值得认真分析和对待。
一是如何使分散在不同部门和主体的数据得到合理有效应用。需要明确哪些数据可以用、哪些数据不能任意地进行商业应用。二是如何构建可支撑大数据的IT基础设施。这一点涉及对传统数据中心的改造和利用、新型云计算存储和处理系统的建设,以及如何尽快建设一个高速、方便接入的互联网通道。三是如何掌握大数据挖掘技术和培养大数据专业人才。大数据分析需要相关技术与人才的支撑。发达国家的部分IT企业已经初步掌握了一些数据分析预测的关键技术,我国相关企业的技术能力还比较落后。麦肯锡公司预测美国到2018年需要大数据分析人才40多万,人才缺口将达10多万。我国刚刚引入大数据概念,人才匮乏问题更加突出。四是如何避免未来出现大数据产业重复建设甚至产能过剩问题。对于热度正高的大数据产业,如何避免因政府不当干预导致这些问题重演,是对我国当前区域竞争下产业发展体制的一个挑战。
总之,面对社会各界的“大数据”热,应理性分析、冷静观察,扎实做好几个方面的基础性工作。
第一,不必急于出台战略性规划和设立产业专项资金。国内的IT企业和地方政府已经意识到大数据产业的发展前景,对发展大数据应用有着较大热情。某些城市已经启动了大数据发展战略,计划到2017年形成至少500亿元的产业规模。在这种情况下,以规划和专项资金等方式进行鼓励,有可能扭曲正常的市场行为,甚至催生泡沫。
第二,合理改造、建设和布局IT基础设施。对现有的传统数据中心及大量的旧服务器资源,可以通过建立虚拟数据中心或进行就近合并等方式进行改造利用,探索如何通过虚拟化技术和云计算平台管理软件来提高利用效率。对新建的大规模云计算数据中心应进行统筹、合理布局,协调不同省市之间加强互补合作,将能源和气候因素作为项目建设的重要条件,保证经济上的合理性。按照网络建设适度超前于产业发展的原则,加快“宽带普及提速工程”的推进速度,尽快解决大数据应用发展的网络带宽瓶颈。
第三,资助大数据竞争前技术的研究,培养大数据分析人才。在现有政府科技计划中,适度安排项目资金支持大数据关键技术的研发,重点在于竞争前技术,鼓励企业牵头或参与承担。人才培养应从高等教育和企业技术人员再培训两个方面入手,允许大学设立大数据相关专业并进行招生,鼓励地方政府出台关于大数据技术人才培训的相关政策。
此外,还要推动数据隐私保护和公共机构信息公开等立法修法工作。目前,《关于加强网络信息保护的决定》已经通过,应在此基础上继续完善个人隐私保护的相关立法,同时还要推动政府及公益性机构信息公开,使更多的可公开数据得到合理应用。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27