京公网安备 11010802034615号
经营许可证编号:京B2-20210330
当人力资源管理遭遇“大数据”_数据分析师
如今“大数据”时代已经来临,由于大数据的数据源充分,并且具备抓取能力强、刷新及时等特点,在大多数领域都能精准地指导资源分配,因此无论工作还是日常生活,都离不开“大数据”的支持。在企业管理中,很多公司都开始运用大数据来整合和管理人才。
“大数据”早已应用 只是缺乏推广
“‘大数据’是在硬件平台的基础上,采集大量的数据,为企业的决策和支持,进行很多数据的分类和挖掘,”曹轶凝首先对“大数据”做了解释,“目前每天的数据增长量很快,根据这个数据分析,得出我们想要的结果。这是主流,比如网购、车票,甚至高速公路的统计,都用到大数据,它是与我们的生活分不开的。”
曹轶凝的说法得到了董锴的认同。“实际上在上世纪70年代,大数据就已经得到应用了,包括企业的智能化、信息化等方面,只是那时候因为数据存储困难、存储量大,缺乏大数据的支持,所以得不到推广。”董锴进一步解释说,数据是被记录下来的符号,本身没有什么作用,但如果把数据解释成人力资源工作中所需要的某些方面,那么就产生了不同的效果。“在很多猎头公司和大型招聘网站,都有类似的数据储备或数据库,但对于单独企业来说,只掌握自己公司员工的数据,对企业外的人才掌握的很少。”董锴补充说,“当人数特别巨大时,我们可以分析出一些东西,对人员结构、未来发展和人才支持,大数据都能产生积极作用。”
“在人力资源工作中,最大的问题就是哪些环节会借助到大数据。数据越多、越大,得出的结果越精准,因为它把各个方面都考虑到了,最后得出一个‘合理值’。作为HR,借助大数据到自己的企业中,把自己想要的内容与数据结合到一起,得出结论,帮助自己制订计划。”
在人力资源管理中用途广泛
在此之前,杨丽云与同事探讨过大数据在人力资源工作中的作用。“比如一些招聘网站、企业培训等,都需要有数据的支持,甚至在薪酬方面的调研、工作计划等,尤其是全国性调研,需要后台大数据的支持,才能从中得出自己想要的关键数据。”因此,杨丽云认为,大数据对每个企业的HR来说非常有用。
对杨丽云的话罗直深有感触。10年前,罗直在上海的一家集团公司做人力资源,当时罗直请了一家数据开发公司做系统。那家公司为罗直公司设计了一个大型框架系统,任何信息都可以按照自己企业的实际情况自动调整。“我们的集团比较大,全集团有几千人,到我离开的时候已经有100多个子公司了,这样庞大的数据如果用Excel表进行手工统计,根本是不可能的事。”罗直说,当时他就跟开发公司商量做这套系统,将全集团每个人的晋升、调动、职业通道,甚至家庭背景,都整理出一套方案,然后将它们与企业内部需求、组织结构结合起来。“这个系统对我的工作帮助非常大。”
“如果HR能够对每个员工70%-80%的信息都了如指掌,那对企业管理来说是件好事。”刘桂平也说出了自己的观点,如果把一个员工的状况和每天的行程都记录下来,一年之后,这个人就完全“透明”了,管理者可以对该员工的未来发展、能力、前景、积极性等进行分析,那么这个员工的发展就是可以预测的。
对此,马淅濛也表示,管理者想要了解哪个员工,只要把他的资料调出来,那么他的兴趣爱好、曾经做过什么、跑过哪些城市、谈了什么业务,这些信息就会完完全全展现在眼前。
有方便之处 也有“可怕”之处
“数据的可怕之处在于,你自己都不记得、不知道做过什么,可它比你记得还清楚。”李朝阳发表了自己的看法,“因为它不只是一个数据库,而是多个数据库串联组成的具体资料。”
“大数据固然方便,但信息安全问题也不容忽视。”董锴接着抛出自己的看法,如果人力资源的数据完全公开化,全部汇总到一个数据库,实际上是实现了整个社会人力资源的最优配置,是理想化状态,但其安全性、隐私性则不容易把握。
这种观点得到了大家的认同。侯荩说,她所在的猎头公司拥有庞大的数据库,能拿到很多“先机”,掌握着大量的优秀候选人信息和大量的企业信息。“安全性是我们非常重视的。”侯荩说,如果这些信息被别人拿走,这对于企业来说是致命的。“如果他们拿走做不好的用途,那么信息源在我们这里,后果是不可估量的。对候选人和客户也会造成损失。”因此,侯荩的公司所采取的方法是禁掉所有外网。“没有特殊情况是不允许登录外网的。”
“我有个客户,他的公司数据量就很庞大,只要给出一个模糊的信息,半小时之内就能把这个人找到。”罗直说,“所以这个公司有摄像头,老板监控员工的一举一动,技术方面还有一个定期监控系统,每隔30分钟或一小时,系统就会自动给电脑拍照,图像自动储存。”罗直解释,这种监控设置又会形成一个庞大的信息库,一旦出现问题,可以从这个信息库中找到责任人。
归根结底只是一种辅助工具 最终决策该由人决定
“大数据是趋势,目前它已经运用到很多领域了,但延伸到人力资源管理中,还不是很得心应手。”马淅濛说,“在人力资源管理中,要看我的这些数据对于我所需求的、所设定的项目,哪些与之匹配,抓取数据进行分析,使其产生帮助。但以目前来讲,大数据给出的分析大多是宏观的,还不能给出比较具象化的结果。”
“比如企业内部对每个员工的关注。”罗直举例说,“如果大数据可以分析整个企业对于人的使用、岗位的设置、组织结构、用人政策等,这一系列信息就会形成海量的数据库,一旦有人提出需求,数据库就会自动开始匹配。我觉得这可以是将来的一个趋势。虽然做得不算太好,但我知道已经有企业开始尝试这样的方式了。”
“大数据的应用应该根据HR的经验和方法,以及公司在特定阶段的需求来决定。”曹轶凝接着说,IT行业给出的只是一些已经成型的算法,把这些数据推荐给企业,但行业内部的需求,需要行业内部的人来判断和提供。这些数据只具有借鉴意义,最核心的决策权还是应该掌握在HR手里,大数据只是一种辅助决策的工具,即便再有说服力,最终的判断标准还是要依据HR的经验和需求。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16