
大数据营销应用的现状可用这样几个“多”来形容:说的比投入的多;投的比做的多,如有些大型国企投入资金,建部门、雇海归,但并没有真正做什么;做的比懂的多,收集了一些数据,但读不出有价值的信息来;懂的比赚的多;认为今后赚的比现在想到的多。
如何才能实现光明的前景?一要养成大数据思维,二要避开三大陷阱。
大数据思维
大数据思维有如下四个维度。
定量思维:一切皆可测。POS 机、网上购物、社交媒体以及各种各样的卡,都是大数据的来源。例如,通过传感器,利用红外线微波可以观测人的生理状态、脑电波等,如果驾车人员犯困,其心 理指标发生变化并到一个临界值,汽车后台就会告诫驾驶员休息。赌场入口处的红外传感器,会根据脑部热量情况,分析进来的是冲动型赌徒还是冷静的赌徒。
汽 车行业的大数据有人、车、环境三个来源。“人”不仅包括车主或者驾驶人员,还应包括乘客;“环境”不光是路面信息,还包括行车所到之处的周边信息,如旅 馆、加油站、旅游景点等等,典型如地图应用。“车”的应用也已有案例,如美国一家保险公司为汽车加装了跟踪器,根据行驶数据来决定保险费率;米其林也会搜 集与环境相关的数据,某智能芯片厂商为长途货运汽车提供的芯片,可以全球定位、调节物流和运输。
跨界思维:一切或可联。跨界有不同媒介、渠道间的跨界,如O2O和LBS,也有商业模式、数据应用的跨界。例如,GoPro是穿戴式照相机,但它也为寻求刺激的滑雪、跳伞运动爱好者,剪辑加工影像,并在电视上播出,吸引了广告和巨量的粉丝团队。
操作思维:一切要可行。应 用大数据,不等于非得要上高大上的设备和硬件投入。例如视频公司根据用户观看视频的过程来决定推送什么广告,其算法可能比较简陋,但速度快。其次,要把数 据和用户心理结合起来,营销精准但不要引起顾客的反感。第三,大数据管理要与KPI结合起来,协调各个部门的利益,否则大家对数据采集不积极甚至不合作。 例如,运营部门如果看重节省运营成本,可能就对数据采集的意愿不强烈。
实验思维:一切应可试。比如,要想知道推荐的效果,可以做一个实验。一半消费者有推荐,一半没有。从短期看,推荐效果并不明显,但长期效果非常明显。因为推荐是购物体验的一部分。短时间内,消费者对所推荐的产品可能没需求,但到有需求时就会想起来,尤其是当推荐产品符合他们的品位和风格时。
三大陷阱
应用大数据进行精准营销,要注意规避如下三大陷阱。
有数不一定有据。应用大数据需要什么样的统计或逻辑背景?首先,描述。要能辨识出我们描述的人跟心里想的目标人群是不是一群人。其次,预测。理解现象、变量之间的相关性。第三,优化。理解因果关系,否则无法优化。简言之,预测需要相关性,而优化则需要因果性,而描述关键在样本的代表性。
大而不全。有些大数据应用收集的数据非常多,但对其倾向性却不清楚。解决的办法是跨界,收集企业之外的数据。例如,汽车制造商要跟电商结合,要跟社交媒体结合,通过跨界把数据做全,才能把精准营销做得更好。其次,要把营销、销售和库存等内部信息打通。
内生变量模糊了因果关系。大数据介入消费者购买过程越多,可能对消费者真实偏好的了解越少。例如,视频网站给某用户推荐了一个同性恋电影,他看了;再推荐一部,他又看了。这时,推荐系统就会认定该用户是同性恋,从而继续推荐,实际上该用户可能不过是一时好奇,最后深受其害。解决办法是定期实验。
基于大数据的精准营销到底谁会胜出?在我看来,要至少具备以下资源优势的一种:产品有优势、对客户特别了解、数据来源特别多、平台优势。目前,电商的优势显而易见,因为其数据量非常大,而且有平台优势。
制造商的机会在哪里?一要把产品做得非常好,二要联网提供服务,就像特斯拉,买车,更是买背后的互联网服务。然而,无论谁是赢家,笑到最后的应该是消费者,特别是新一代以网络为家的消费者。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26