
消除数据孤岛,摆脱企业大数据困境
在大数据全球技术峰会上电子科技大学教授周涛教授提出了大数据发展的三个阶段。
大数据1.0:企业利用自身数据对业务进行优化。比如老板要看的各种报表,各种CRM系统,这属于数据使用的最初阶段,当然也有企业不用数据。
大数据2.0:企业利用外部数据对业务进行优化。比如银行评估信用体系还会用到互联网行为记录,今日头条的推荐还会用到微博的数据。在互联网横行的这个时代,到处都在谈跨界,大数据的一个重要特性就是消除行业的壁垒,用数据连接各行各业。当前已出现数据交易,数据交换等各种商业现象。
大数据3.0:当数据交易,数据交换规模扩大化,相关法律法规趋于健全,处理分析数据的工具更丰富,企业都可以将内部数据包装成产品对外进行服务。比如百度上线的API STORE 就是数据交易的一种方式,上面有各种天气数据、金融数据、地理数据,按照使用频率进行付费。只是现在提供这些服务都是当前使用大数据比较前沿的企业,这个是有平民化趋势的,只要你有与众不同的价值数据就能变现。
个人比较认同这个大数据发展的趋势,大数据3.0时代实际上就是消除企业间的数据孤岛,让各式各样的数据可以协同发挥价值。搞清楚大数据未来发展方向,我们再来谈谈目前大部分企业面临的大数据困境–数据孤岛。
企业发展到一定阶段,出现多个事业部,每个事业部都有各自数据,事业部之间的数据往往都各自存储,各自定义。每个事业部的数据就像一个个孤岛一样无法(或者极其困难)和企业内部的其他数据进行连接互动。
我们把数据孤岛拆分成两类:物理孤岛和逻辑孤岛。
物理孤岛:数据物理上的孤立,各自存储,各自维护。这样就会出现重复造轮和资源浪费。每个事业部都需要维护一套存储系统,各个事业部申请的机器资源都是富足的,每个事业部都各自配备一个专门的负责人。每个事业部都把数据采集、存储这个活当成是一个累赘、苦活、脏活,因为他们的kpi不在这边。当需要进行跨业务的数据合作时,往往要进行大量的数据迁移、拷贝,大部分的人力资源都耗费在数据准备阶段。
逻辑孤岛:数据逻辑上的孤立,每个事业部都有自己的数据规范,站在各自角度对数据的理解和定义,往往会出现相同的业务id、用户id有不同的定义。当需要进行跨业务的数据合作时,往往会发现沟通成本极高。
企业内部的这种孤岛现象是普遍的存在的,特别对一些集团化企业孤岛效应更是明显。未来大数据的发展是要消除各行业的数据孤岛现象,创造出各种渠道、模式让数据协作的更好。不管从大时代的角度,还是从发挥自身数据的价值角度,我们都需要去积极改变这种孤岛现状。
消除物理孤岛:统一采集、集中存储、开放计算。
消除逻辑孤岛:制定数据规范、定义数据标准、建设维护元数据。
让数据:易采集、易存储、易理解、易处理、有价值!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29