
大数据:网络时代的科学读心术_数据分析师
人的心思之所以难以捉摸和认识,是因为人的主体性问题。凡是正常的人,都有独立自主性,思想可以不受外界的影响。正因如此,人的思想世界是一个极其复杂的世界,神秘多变、复杂多样。为了读懂他人的心思,不少学科和诸多学者作了许多努力。例如,德国学者弗洛伊德专门创立精神分析理论,试图通过梦的解析来读懂人的所思所想。现代心理学则试图引入观察、实验、问卷调查等自然科学方法来破解人们的心理,把握人类的心理活动规律,建立关于人类心理的科学体系。这些研究揭示出人类心理的一些共同规律,为科学读心术作出了重要贡献。然而,由于信息的不对称性,心理学、社会学等学科无法全面揭示人类的思想和行为规律,而大数据技术的兴起为揭开人类心灵面纱提供了一种全新的科学工具,从而成为网络时代的科学读心术。
大数据使读懂他人心思成为可能
所谓大数据(big data),从字面意义来说就是数量规模特别巨大的数据集合,因而用传统的方法无能为力而必须使用计算机或云计算技术才能处理。近年来,智能手机、平板电脑等移动智能终端的大量普及,各种监控系统以及物联网的形成,互联网络高度发达,云存储、云计算等云技术迅速发展,带来了数据采集的自动化、数据类型的多样化、数据传输的即时化、数据存储的云端化以及数据处理的并行化。从数据采集来说,数据来自智能设备,在无人参与的情况下,海量数据就不知不觉地从智能终端中自动产生出来。这种由智能系统采集的数据由于不被人为干扰,因而反映了人们思想、行为的真实状态,具有与主体无关的客观真实性。从数据类型来说,智能系统采集的数据基本上都是离散数据,能够及时被电脑等智能设备处理,而且类型特别丰富,包括文本、图片、音频、视频等,全面刻画了数据采集对象的各种状态。从数据传输来说,智能终端采集的数据被即时传输上网,实现了在线采集和传输。从数据存储来说,云存储具有海量的空间,采集数据的智能终端不再需要巨大的存储能力。而面对海量的各类数据,并行的云计算能够在不同的地方同时进行计算和处理,再多的数据在云计算面前都不在话下。
在大数据时代,我们每个人都不知不觉地成了自动且免费的数据提供者,自动暴露了自己的一切言行。我们每天浏览网页,阅读新闻,发表评论;我们偶尔也上网购物,漫步在淘宝的虚拟店铺,在亚马逊、当当的网上书店里浏览、购买图书并留下自己的评论;我们也经常在博客、微博中洋洋洒洒写下自己的所思所想和世界各地的旅游足迹,有图有字有真相;我们用QQ、微信等网络交流工具与熟悉或陌生的所谓网友谈天说地,敞开心扉与素不相识的陌生人透露自己的喜怒哀乐;我们还每天打电话、发短信,在超市购物,溜达在装满摄像头的街道和建筑中。殊不知,这一切的一切都已被智能终端自动记录下来,并上传网络,存储云端。总之,我们的一切,包括所思、所想、所为,都留下了数据化足迹。如果说物理足迹会随岁月流逝而消失的话,那么这条数据化的足迹却永远难以抹去,成了一条永不消逝的信息链。大数据时代,一切心思都已经摆在网络上,透明而清晰。通过大数据,不懂心理学的普通人,可以轻松读懂他人的心思。
大数据或能读懂过去、预测未来
大数据为什么能够读懂人的心思,又是怎样读懂人的心思?关键就是它解决了人类心理信息的不对称问题。对于复杂的心理活动来说,传统的数据收集方法太落后,人工收集的数据难于解决信息失真问题,而且所收集的少量数据根本不足以全面刻画人的复杂心理,因此研究者与研究对象处于完全的信息不对称状态,人类心理当然就显得神秘莫测。大数据属于自动收集数据,随时随地记录下人们的一切,这海量的数据反映了我们所有的言行举止,暴露了我们的一切行踪,研究者只要挖掘这些数据就能掌握我们过去的一切信息。通过数据挖掘,不但可以刻画人们过去的心理、行为轨迹,而且还可以找到数据间的相关性,找到其中具有规律性的东西。根据数据足迹及其相关性规律,他人不用复杂的猜测过程就能用数据手段科学地刻画和把握人们的内心世界。更有甚者,大数据不但能读懂人们的过去,或许还能预测未来。我们知道,人类的思想和行为都具有路径依赖性,根据以往数据的相关性,能够找到人们过去的思想行为规律。根据这些规律,他(她)未来一定时间内会想什么、会做什么就有可能预先被推测出来。对那些有犯罪企图的人,如果我们能提前预测就能防患于未然。当然,对一般人来说,能够预知他人的心思可能也很有意义,否则怎么会有那么多人猜测他人心思呢?例如恋爱中人就特别想知道自己恋人的所思所想,以便做好应对之策。
大数据比人们自己还更了解自己。在大数据面前,人们以往的假面具和伪装术都失去了效用和意义。不过这也带来了诸多的伦理问题。例如信息安全、隐私保护和个人自由就是几个突出的问题。我们每天使用电脑和手机,每天暴露在监控之下,这些智能设备产生的数据究竟产权归属于谁?我们自己是否有知情权、使用权和删除权?我们的所有隐私都暴露在网络中,随时可以被他人挖掘和利用,我们每个人在大数据面前都变成了透明人。因此,在大数据时代,我们的隐私权该怎么来保护?大数据能够挖掘我们的过去,预测我们的未来,那我们的思想和行为自由会不会受到监视和控制?我们是否还有自己的思想和行为的自由?这些问题都值得我们认真去思考和解决。文章来源:CDA数据分析师官网
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28