
大数据的终极目标就是成为你肚子里的蛔虫
前我曾在自己的脸书上问朋友,关于大数据很夯,有没有大家推荐的好书或是必看之「圣经等级」的可以参考?结果回应相当热烈,推荐也不一而足,从商业统计学到行为分析学,也有学界作者到业界作者,约10来本书,让人看得眼花撩乱。
转念一想,我既然有这问题,大概多数人也有这问题吧。意思是说,科技发展进到物联网时代,「大数据」这名词被不断提及,结果认真想了解才发现,这真是一门好深的学问,不仅仅只是以统计为核心,必须得从使用者的身份识别开始,逐渐扩及到情境、行为、认知、消费,以及企业与使用者之间的互动,通通都有值得被纪录与分析的思维在里头。
比方说,之前Google花了台币将近 1 千亿,买下Nest 这家公司,就让我感到有些疑惑。Nest 是在2010 年由 Tony Fadell 和 Matt Rogers 所创立的公司,在 2011 年发表了产品 Thermostat(节温器);2013年则推出了 Smoke sensor(烟雾感测器),双双获得超级好评,但即使卖得好,我还是想不出这与 Google何以愿意砸重金购併有什么关联性。
要回答这个问题,就得从大数据观念着手。简单说,真正影响消费者购物决策的关键,并不是从他在网上挑东西、点击、浏览的数据下手,而是得「还原」他当时的「情境」,那才是关键。
作者举了一个很有意思的案例: A 君上班途中,不经意看到路人穿着一件T-shirt 觉得很好看,到了公司之后,打开电脑,立刻上网搜寻,没想到跑出了10 万件商品,看的他眼花撩乱。正当他想继续看下去的时候,老召集所有人开会,于是他没有往下找,到了会议室开始进行会议。
会议进行中,他觉得有点无聊,于是拿出手机开始重新搜寻,却始终都没找到那件让他魂牵梦萦的 T-shirt。浏览时突然一个推荐商品映入他的眼帘,是一款他向来就很喜欢的手机品牌正在大促销,于是他想都没想就在线上买了这支手机。
如果你是数据分析师,单纯只从这位 A 君的线上浏览行为去分析,你一定会感到非常疑惑:为什么他明明是在找T-shirt,最后却买了手机?如果你将这样的行为列入演算的推送机制,未来就很可能会错判消费者的动机与消费习惯。
这就是作者想强调的重点,理想上,企业应该要能「还远」使用者的当下情境,才能理解消费者心裡想要的是什么,进而推送最正确的资讯给他。作者也举了阿里巴巴实际的一个案例,某一年的「十一黄金周」,他们发现使用 iPad 上网买东西的人突然暴增,原来是因为当年中国政府实施黄金週高速公路不收过路费的政策,于是大家都塞在高速公路上,于是只能用iPad 购买商品。同样的,如果你以为那是因为使用iPad 有比较好的浏览经验,而误判消费者心裡所想的,那也会导致企业判读资讯错误,而引发出错误的结论与企业决策。
到这里,我终于能明白,为什么 Google 会愿意砸下重金买 Nest,因为这是他们布局的一环,最终目的就是想知道你从起床到用早餐,到出门上班的交通期间,在上班期间内,中午用餐,下班后交通期间,晚餐,睡眠的所有讯息;企业也想收集你在家、在户外、在工作、在休息等……所有行为与情境,好作出对你这个人在连上网的购物行为做交叉分析,进而还塬你当时可能面对的状况与想法,掌握你真正的消费动机,推播最正确的资讯与商品给你。
这就是大数据想达成的终极目标:成为你肚子里的蛔虫,并且试图餵出你最想要的东西,提升流量,提升点击率,提升购买率,提升再购买率。
虽然听起来很可怕,因为你所有的行为都被大数据所掌握,然而活在网络时代的你,使用智能手机的你,大概就已经离不开这个处处被收集资料的网络,你唯一可能避开的方式就是不使用网路与电脑,不使用手机上网,也不用网路购物,但我相信这对绝大多数人来说已经是不可逆的行为。
无论如何,大数据的时代已经来临,只是悄悄在你看不见的地方蓬勃的运行着。我始终相信,大数据为人类带来的正面意义会远大于负面,只是你得有意识的了解它运作的逻辑—无论你是利用数据或被数据利用,都应该对大数据有所了解。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10