
以大数据预测房价是科幻小说_数据分析师
炒股有什么诀窍?说起来很简单:低买高卖。问题是,你怎么知道哪里是低买,哪里是高卖?
媒体报道,国家统计局试图利用网络搜索数据实现精确的房价预测。国家统计局是政府负责经济数据统计的部门,但是这一做法,暴露了国家统计局并不懂经济。当然,国家统计局不懂经济这一点,早就暴露了,不过这一次暴露得也太明显了一点,让人有荒唐的感觉。
假如房价可以用大数据预测,那么股价也是经济数据,也可以通过大数据预测。并且,股市数字相对房价更透明、更精确、更全面。要得到股市大数据,比得到房价大数据容易多了。假如股市可以预测,那么,股民就真的知道哪里是股市的低点,哪里是高点,然后就真的低买高卖,大发其财了。
的确,有很多人做过这方面的努力,希望通过建立模型预测股市而发财,但所有人都失败了。
假如人们知道10天后是股市的高点,人们会怎么做?大家都会买入,结果就会在现在就把股价抬上去,高点今天就会到来。
股市的这种现象,经济学中称为市场有效理论,意思是说,市场上所有的人都在预测,所有信息现时就会反映在股价上。10天后的利好或者不利好,今天就会包含在股价中。西方有种说法,说猴子扔飞镖选股,业绩也不会比基金经理差,这是因为,基金经理面对的,也是市场消化了的股价。当然有些基金经理的业绩更好,但那其实更有可能是运气。
病毒的传播可以建立模型预测,那是因为病毒的轨迹是确定的。但人的行为是不断变动的。当人们知道明天的信息,他们在今天就会改变行为的轨迹。所以,经济数据不可能精确预测。
经济学确实可以给出一些趋势判断。比如,如果政府加大印钞,经济学可以判断这是促进房价上涨的因素,但具体涨多少、什么时候涨、还有没有其他抑制上涨的因素同时发生,这些都是无法预测的。
经济学家张五常喜欢引用一句话:早知三日事,富贵万万年。任何企业家,都是在冒风险,比运气,看谁恰好符合了消费者的需求。符合消费者需求的就发财,否则就被淘汰。没有任何人可以确知某个经济事件。
但是统计局却宣称自己可以早知三日事。试想一下,统计局的官员并没有比企业家聪明假如他们比企业家聪明,他们早就下海发财去了他们能想到的事,企业家会想不到?如果真的有准确预测房价的办法,那肯定早就被企业家发现了,并且早就被用来发财了。但悖论也就来了:如果大家都知道房价的精确涨跌,那么,他们就会采取行动买卖,这个信息就会反映在今天的房价中了。这个悖论企业家无法解决,统计局更无法解决。
也许为了掩盖这一悖论,统计局宣称,他们将把精确的预测数字只在内部使用。他们看来也明白,如果公开,就会引起人们行动的变化。但是这个说法只是自欺欺人。一是上面说过的,如果真的存在那种人们梦寐以求预测办法,无数企业家早就发现了;二是,市场上无数人的行为,哪怕是基于模糊感觉的行为,也早就消化了一切未来预测。
的确,有很多人都表现出预测房价的准确性,比如任志强,但是大家都明白,那也只是任志强基于专业经验的一种感觉。任志强任何时候都有可能预测失败。
常有人说,某某接近中央领导,所以他事先知道政策会怎么样、经济会怎么样。其实,那是不可能的。不要说接近中央领导的人,就是李克强总理自己,他也不知道自己下一步会怎么行动。去年年底的时候,他不会知道自己将在3、4月份搞微刺激;3、4月份搞微刺激的时候,他不知道7、8月份经济数据会下滑多少。所有这些事情都是不确定的。政府应该做的是,让市场去处理不确定的事,让企业家去预测消费者的需求。政府一旦加入行动,就会增加市场不确定,让企业家、消费者无所适从。
统计局不会比任志强做得更好,它能做的,无非是浪费纳税人的钱,然后装出内部掌握了未来房价走势的权威架势,以证明自己没有浪费纳税人的钱。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26