
大数据拦路 智能联网设备面临四大难题
上周拉斯维加斯举行的CES大展的主题便是物联网以及组成物联网的各种智能设备。每个参展商都能拿出某种号称最智能的新鲜玩意。但是这些智能设备真的智能吗?大数据和物联网一体两面。物联网收集来自各种智能设备的数据,这些数据需要被进行分类、重组并产生合理的决定。然后物联网利用终端智能设备来实施这些决定。这才是真正的智能化。
目前,随着智能设备的快速增长,在缺乏应用背景以及用户群的情况下,智能联网设备面临四大数据难题,阻碍了智能化的发展。虽然智能联网设备所面临的数据问题显而意见,但似乎很少有人想要真正讨论这些问题。
问题一:功能过于单一,没人会穿戴50种设备
CES大展上,VentureBeat网站的哈里森·韦伯在身上使用了56种可穿戴设备。如今的物联网科技创业者已经早就在前辈身上吸取了失败的教训,那就是任何产品使用起来一定要简单。因此,一种设备能把一件事真正做好就已经成功了。但是在未来智能设备爆发的情况下,衡量睡眠、进食速度或膝关节健康的设备都要分开穿戴的话,显然不太现实。
没有人愿意像哈里森·韦伯那样管理和穿戴50种智能设备。要不然你看起来就会是一名智能设备推销员。今天的智能设备创业公司正在用大量的单一解决方案来帮助简化人们的生活。为了实现简单易用的目标,这些公司过于集中在一个单一的问题上。CES走廊充斥着的智能瑜伽垫、智能阳光强度感应器、智能癫痫探测器、智能滑雪板等产品,让人变得无所适从。
问题二:获得传感器数据不是目的
就拿上文提到的阳光强度感应器来说。你真的需要一个腕带来感知当下的阳光强度吗?是不是可以使用智能手机来查询目前的光照强度,以确定是否应该出门。而不是出门后使用某种智能设备定期测量光照水平。前者的预判才是真正的智能,读取传感器数据谈不上什么智能设备,只是手段而已。
智能联网设备崛起后,会有大批的相关公司倒闭。只有少数的企业才能生存下来。这些幸存者将是那些能够发现更多数据背后信息,由此做出预判的设备。这意味着大量的数据挖掘能力。
早期版本的Jawbone的可穿戴健身设备,都要求配戴者手动登录他们的活动内容。而最近的版本则变成将正在进行的活动与已知活动模式进行比较,来对活动内容进行猜测。这就是从简单的数据读取,到真正智能化的最好例证。
问题三:数据无法共享
智能设备的崛起意味着传感器数据的几何增长。除非你是大型可穿戴设厂商-比如Jawbone、Fitbit、Withings等,否则可能无法收集足够的用户数据来获得用户生活的突破性发现。这使得大厂商有很强的先发优势。
当可穿戴设备厂商不可避免地被整合,所有倒闭公司收集的数据将会消失。目前,不同品牌可穿戴设备之间几乎没有任何数据共享。
人们不愿意从苹果切换到Android的最大原因就是操作的熟悉度和iTunes中的数据。同样地,在物联网的世界,数据的排他性阻止了用户在不同的设备之间切换。这也是为什么每个智能设备提供商都试图成为我们健康、家庭或财务的中心节点。
就像三星CEO在他的CES主题演讲中说的那样,“人们都希望为物联网创建一个单一的操作系统,但有这些想法的人目前都只关注自己的产品。”
问题四:数据挖掘并不易
如果数据不能改变你的行为,那搜集起来还有什么用呢?CES上有一款应用叫做V1bes,自称是“心灵应用程序”。它可以测量压力水平和大脑活动。
这一应用听起来很有用。但是知道压力水平,只是搜集到数据的表象,产生这种压力水平的原因无从得知。也许这些数据可以告诉用户压力水平过高,但是它并没有告诉用户可以引发慢性抑郁的压力来自哪里。
另一家叫做Narrative Clip的公司做的可能好的多。这家公司的产品每30秒就会拍摄一张照片来记录用户的生活,利用该公司的独特算法来决定哪些东西需要进一步分析,这种产品可能会让用户找到触发压力的线索。
不过,这次的CES有一点很明确,那就是智能联网设备市场不久的将来一定会爆发。我们正处在各种想法的漩涡之中,但很多都会胎死腹中。这些想法要么过于单一,要么无法对我们的生活产生任何帮助。智能终端、物联网和互联网大数据就是支撑这一市场的桩脚,忽略任何一环都无法支撑起一个有效的市场。目前智能终端和物联网无论从技术上还是实际应用上都日趋成熟,但是在智能化背后起核心作用的大数据却被有意无意的忽略。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29