
利用大数据技术创新社会治理_数据分析师
交通拥堵一直是令城市管理者十分头疼的难题。为缓解交通拥堵,利用信息技术是其中的新方向之一。2012年IBM的研究者与法国里昂市合作开发了一套缓解道路拥堵的系统——“决策支持系统优化器”,通过整合、分析市政网络现有交通数据以及来自社交媒体的新数据来医治交通顽疾。这只是运用大数据来解决社会治理难题的一个初级案例,不远的将来,利用大数据技术进行社会决策与治理,有可能成为政府行使职能的常态。
大数据技术为社会治理带来新机遇
社会治理是对社会的经济、政治和文化等事务进行的组织、协调、指导、规范、监督的过程。它涉及合理有效配置社会资源,比如提供教育、文化、卫生、体育、社会保障等社会公共服务和公共产品,保障社会公平与公正;涉及通过行政及司法手段保障社会安全和社会稳定。而社会治理目标的实现,是以掌握治理对象的状况及其外部环境的信息为前提的。现阶段,我国正处在社会转型期,急剧发展变化的社会,对于包括人、财、物、事等在内的庞大而复杂的社会管理信息需求,与当前大数据技术的发展不期而遇。
创新社会治理,是我国应对社会转型、化解社会矛盾、协调利益关系、维护社会秩序所面临的一项重大战略任务。针对目前社会治理领域普遍存在的服务理念滞后、决策机制不够科学、部门协作亟须加强、工作方式待改进与工作效率求提升等问题,大数据技术从认识、理论、方法、实践和效果评估等方面都能给人以启发。大数据技术通过对海量数据的快速收集与挖掘、及时研判与共享,成为支持社会治理科学决策和准确预判的有力手段,为社会转型期的社会治理创新带来了机遇。
大数据在社会治理中的创新应用实践
建立大数据中心,及时搜集、实时处理数据信息,为科学决策提供坚实基础。政府部门是社会治理的主导者,在出台社会规范和政策时,依赖大数据进行分析,可以减少因缺少数据支撑而带来的偏差,提高公共服务的效率。实践中,浙江法院系统通过建立全国法院案件信息数据库,及时、全面、准确地采集反映案件及其审理过程情况的各类信息,为加强对办案的全流程监管,实现科学分类、多元检索和海量数据的分析比对奠定了基础。
打造大数据电子政务平台,畅通利益诉求与沟通渠道,建立主动应对的社会治理模式。大数据分析注重用户行为的分析和反馈,通过网上办事、区域联动、资源共享的电子政务平台和网格化社会管理体系,促进政府和公众互动,获取公众行为的大数据并加以分析,可以更加及时地发现社会矛盾和问题,将过去政府被动应对问题转变为主动发现问题和解决问题的治理模式。
对社会大数据进行历时性和实时性分析,加强社会风险控制,提高政府预测预警能力和应急响应能力。无论是对现实社会各行业的运行监控,还是对网络虚拟社会的治理,都可以基于历时和实时的大数据分析,密切掌握市场调节失灵、社会秩序与稳定受到威胁等需要社会治理介入的节点或情况,这对于进一步加强和完善社会公共安全体系,完善社会应急管理体制等具有重要作用。
积极发展大数据技术创新社会治理
制定大数据国家战略,加强顶层规划和设计,打造“数据中国”。大数据将成为引领未来科技和社会进步的重要载体。麦肯锡的大数据研究报告称,大数据是国家和地区发展的主要指标,已经渗透到金融、健康、住房、交通、教育等重大民生领域,正在影响着企业的决策和国家发展的战略部署。国际上,美国、英国、法国等发达国家先后出台大力发展大数据技术的相关政策,日本和韩国也积极付诸大数据技术的实践。我国广东、上海、山东、浙江等部分经济发达地区也已先后启动大数据行动计划或成立大数据联盟,以促进大数据技术的发展和应用。大数据技术发展既是创新社会治理的需要,也是信息社会发展的必由之路。建议我国从国家层面设计大数据发展战略,做好顶层设计,引导和推动各领域、各行业对大数据的研究和利用。
完善大数据基础设施建设,扩大社会应用,促进数据驱动的社会决策和治理常态化。信息技术基础设施是大数据技术应用的载体,大数据本身也将成为社会基础设施的一部分。大数据中心和数据应用平台建设的水平,决定了大数据时代的数据能否被有效收集、分析、挖掘和应用。这些大数据基础设施的建设可以与国家信息化建设相融合,以政府为主导、技术型企业为主力、公众参与为纽带,形成覆盖有线与无线互联网、各种社交网络、各种使用终端在内的社会化统一数据平台,通过大数据挖掘和分析技术,有针对性地解决社会治理难题;针对不同社会细分人群,提供精细化的服务和管理。同时建立数据库资源的共享和开放利用机制,不仅打破政府部门间的“信息孤岛”现象,也加强政府与社会公众间的互动反馈,不断扩大在教育、医疗等领域的应用,使数据驱动的社会决策与科学治理常态化。
建立数据使用规范,规避大数据的使用风险。技术往往是一把双刃剑。大数据的收集和使用可能涉及国家信息安全和公民隐私等,需要在立法层面明确大数据采集和使用的原则。大数据平台本身的安全性也应引起重视,需要国家相关部门制定大数据技术标准和运营规范,重视大数据及信息安全体系建设,加强对重点领域敏感数据的监管。应当采取必要措施,构建大数据良性生态环境,调动全社会积极、有序地运用大数据技术来创新社会管理。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10