
大数据对教育的挑战_数据分析师
“在信息技术大革命的今天,规训与教化在撤退,支持和服务在推进。作为万物之灵,人类本身就有逻辑推断和自组织的能力,需要将之发掘。正在发生的教育革命并不是要把传统的课堂搬到网上,而是让新技术解放人们本来就有的学习能力和天分。”
印度教育科学家苏伽特·米特拉是一个里程碑式的人物。1999年,他去了印度的很多偏僻乡村,那里的人既不懂英语也没见过电脑。苏伽特在孩子们经常聚集的街头的墙上装上连接互联网的电脑屏幕,配上鼠标,然后离开那里。几个月后,试验表明,孩子们无师自通,学会了使用电脑。在以后的十多年里,苏伽特在印度、南非、柬埔寨、英国、意大利等地还进行了类似的以生物、数学、语言等为内容的教育实验。结果证明,在不需要老师或科学家输入逻辑和程序的情况下,学习者可以独立自主地完成学习,这就是“自组织学习”。由此,苏伽特认为:教育是一种自组织行为。
学习是一种自组织行为,那么,教师和教学机构的作用便要重新定位。互联网的不断普及,网络资源进一步开放,在线教育就不能仅仅是把传统的课堂搬到网络上,这样的做法也许更加违背学习规律。新媒体教育联盟在做了相关历史研究的基础上,总结了诸多人类的学习行为:社会学习、可视化学习、移动学习、游戏学习、讲授学习等,每一种学习方式,在信息和知识的载体方面,基本上都有相应的技术基础。换言之,技术既可能扩展人类的学习方式,也可能限制人们的学习方式。一旦有新的技术出现,这些新技术就会改变信息和知识的传播模式,那么,人类的学习方式也会相应地产生根本性的变化。在互联网时代,开放的社会和资源将进一步解放人们的学习,越来越多的人不用待在学校里被动地接受学习,他们会把自组织学习发挥得淋漓尽致。
在美国新的在线教育浪潮中,那些拥有大量粉丝的大学教授,轻易能够拿到数千万美金的创业基金。这对于传统的大学是一个巨大的挑战,正是在这个背景下,促动了大学改革的神经:再不顺应潮流,那么校园将不是最优秀教师的聚集地。然而,教育要想真正获得新生,不仅仅在在线教育上,而在于传统教育理念的变化:教师的功能,应该把低层次的和可拷贝的交给大投入的电影模式去做。而未来,教师将成为教练,师生将走向训练场,如何从传统的篮球场,变成灯光幻影般用新技术武装的“主场”。
在信息技术大革命的今天,规训与教化在撤退,支持和服务在推进。教育本质是对学习者的支持和服务,而不是对他们的规训和教化。作为万物之灵,人类本身就有逻辑推断和自组织的能力。发掘这种逻辑和自组织的能力才是正道。正在发生的教育革命并不是要把传统的课堂搬到网上,而是让新技术解放人们本来就有的学习能力和天分。学生得到解放,人力资本成倍地增长。
在这场教育的变革中,最严重的问题已经不是教育资源的缺乏,而是毫无天分的教师在错误的方向上还在“勤奋地工作”。苏伽特说:“对于教育者来说,这是一个大转变的时代。我亲眼目睹着教育界的各种力量在重新洗牌。或许我们说‘教育革命’未免言过其实,但是各种变化的确在更迭着。教学模式的多元并存会是一个长期存在的现象。但是毫无疑问,新技术从外围给教师增加了新的竞争对手。新技术的应用又导致学生在心理预期、学习习惯等方面的变化,这就从核心和内部促进着教学过程的转变。学生变了,不如以前‘好带’。这并不是坏事,在这当中,不知潜藏了多少机遇和可能性等待着有心之人去发现!”
苏伽特有一个很具有代表性的观点:“你能够想象和确认,你所教的和考核的东西,在今后20年学生们走向工作岗位还管用吗?”为此,苏伽特分析,在今后的大数据时代,只有三种最基本的东西是学生用得到和必须学的东西:一是阅读,二是搜索,三是辨别真伪。谈到数学,苏伽特说:“也许数学,将成为一种体育运动。”基本能力加每个孩子特长的“体育运动”,构成了苏伽特心目中的未来教育,这种体育运动也许是数学、领导力、音乐、美术、篮球……数学也许是每个孩子的体育运动,也许是一部分专业运动员的体育运动,但大数据时代的数学,将不会是教育的基本标准和指向。
在当今的信息时代,未来教育在互联网等技术的作用下变得越来越个性化,大数据技术的应用将有利于个性化教育,标准化的学习内容由学生自组织学习,学校和教师更多的是关注学生的个性化培养,教师由教学者逐渐转变为助学者。在逐渐到来的大数据时代,互联网教育与学校教育将逐渐分离,更多的交往互动、个性化服务和灵活的学制将使学校获得新的生机。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10