
2014年大数据没迈过去的槛儿_数据分析师
刚刚过去的2014年,见证了大数据架构发展和部署上的进步。NoSQL数据库得到越来越多的用户认可,Hadoop 2 也突破了分布式处理框架一开始批处理的角色,走向了运营分析。
Hadoop 2 平台最早发布于2013年末,今年主要发布对Hadoop 2的各种修补,主要围绕HDFS和YARN(详见《2014年Hadoop大事件盘点报告》)新版本将HDFS从早期批处理的MapReduce编程模型和处理引擎中解放出来,为Hadoop打开了新的天地,比如交互查询和流处理应用程序。但从概念证明(proof of concept,POC)到投入生产是一个质的变化,2015年将见证Hadoop更多的发展。
数据架构师和管理者今年花了很多精力研究主流关系型数据库的内存处理技术。同时,非关系型数据库的讨论也很多,纽约咨询公司Caserta Concepts的创始人兼总裁Joe Caserta认为:“如果你觉得你可以不需要庞大的SQL数据库就可以完成一些任务,那么新兴技术就算是取得了胜利。”
除了格外吸睛的hadoop之外,另一个引人关注的开源产品是分析处理引擎Spark,Spark经常和Hadoop 2搭载使用,在处理批任务时比MapReduce更快。Spark另一个关注点在于机器学习,这也是过去一年里大家常说的话题。
MongoDB, Couchbase, Aerospike等一长串的NoSQL数据库在过去的一年里持续发声,恐怕没有哪一天是不说NoSQL的。在2014 MongoDB世界大会上,CitiData的全球总裁Michael Simone就讽刺了NOSQL数据库的过度宣传。不过这并不能阻挡NoSQL的发展势头,因为它确实擅长处理大规模数据集,尤其是网络上多种格式的非结构化数据。
举例来说,NoSQL数据库经常被贴上内存标签,支持实时决策,还可以帮助呼叫中心人员跟踪用户网络行为,解决技术难题,以及存储并分析社交媒体信息。
在回顾NoSQL数据库的时候,我们不要忘了NewSQL技术,它致力于兼取SQL和NoSQL平台之长。
数据架构是大数据的核心命题
这些技术的发展都离不开一个核心命题,即融入到企业数据架构。Accenture分析咨询集团负责数据供应链的信息管理总监Vince Dell’Anno表示:“大数据今天面临的主要问题是架构问题,即企业如何把这些新的技术集成到一个环境中。”
Dell’Anno表示,很多IT部门面临的挑战是他们要允许成百上千的终端用户访问新产生的数据,如何管理成了问题。事实上,构建可扩展的大数据系统、将其余现有数据仓库、分析和运营环境集成是2014年技术发展的主题。很多时候,为了应用新工具,大数据架构师不得不放弃熟悉的数据模式,遵循新的数据管理方法。
就在2014年行将结束的时候,hadoop发行版供应商Hortonworks申请IPO上市,这个过程中,它筹资一亿美元,Ovum分析师Tony Baer在博客中写道,此举对于商业前景的意义更大,这是一个新兴的市场,几乎所有的销售的新产生的,竞争对手也相对较少。并且,这一领域还是有很多有待开垦的市场的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10