京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据技术提高物联网“身价”_数据分析师
大数据时代已经来临。传感器、RFID等的大量应用,电脑、摄像机等设备和智能手机、平板电脑、可穿戴设备等移动终端的迅速普及,促使全球数字信息总量的急剧增长。物联网是大数据的重要来源,随着物联网在各行各业的推广应用,每秒钟物联网上都会产生海量数据。
数据是资源、财富。大数据分析已成为商业的关键元素,基于数据的分析、监控、信息服务日趋普遍。在各行各业中,数据驱动的企业越来越多,他们须实时吸收数据并对之进行分析,形成正确的判断和决策。大数据正成为IT行业全新的制高点,而基于应用和服务的物联网将推动大数据的更广泛运用。
由于物联网数据具有非结构化、碎片化、时空域等特性,需要新型的数据存储和处理技术。而大数据技术可支持物联网上海量数据的更深应用。物联网帮助收集来自感知层、传输层、平台层、应用层的众多数据,然后将这些海量数据传送到云计算平台进行分析加工。物联网产生的大数据处理过程可以归结为数据采集、数据存储和数据分析三个基本步骤。数据采集和存储是基本功能,而大数据时代真正的价值蕴含在数据分析中。物联网数据分析的挑战还在于将新的物联网数据和已有的数据库整合。
物联网上的大数据应用空间广阔,大数据和物联网结合充满无限可能。随着物联网、互联网、移动互联网、智能终端、大屏显示系统、云计算平台等的联合应用,物联网上的大数据可帮助人们建立智能监控模型、智能分析模型、智能决策模型等应用,深刻改变人们的生活。
智慧城市是物联网最大的应用领域,而智慧农业、智能家居、智慧物流、智能安防中的视频信息处理、智慧交通中的交通实时诱导、智慧环保中的环境监测等物联网领域都是大数据应用的“用武之地”。如:在环境监测方面,传感器借助物联网传递信息到互联网平台或移动互联网平台,实时监控环境变化。通过环境监控模型,对收集到的海量环境数据进行分析,发现环境指标变化的异常点,帮助环保部门提前预测某地环境的变化情况,对环境指标偏离正常指标值的,提前发出环境污染预警。而智能制造或“工业互联网”更是未来大数据和物联网美妙结合的经典案例。在行业应用方面,大数据和物联网的结合也会“擦出火花”。如:邮政服务可通过大数据和物联网转型为“邮政物联网”。邮政网络可配备低成本传感器,极大地增强邮政运营商收集有价值数据的能力。这个庞大的新数据来源可帮助邮政运营商提升运营能力,改善客户服务,创造新产品和服务,并为更有效率的决策提供支持。
物联网的价值在于其数据。物联网带来了突破性的技术进步,但管理大数据的问题也变得更加突出,需相关信息通信技术鼎力支撑。如:数据产生、捕捉、传递和分析,需快捷、稳定、可靠的广域网络,3G、4G、 WiFi等无线通信技术应不断优化,以支持物联网及各传感器节点感知信息能力、传输能力、信息处理和存储能力等的全面提升。
物联网产生大数据,大数据助力物联网。由物联网引发的大数据潮流还将助推云计算等信息通信新技术的融合发展。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16