
大数据需要大智慧,切忌空谈_数据分析师
大数据在国内已经形成应用热潮
最近两年,大数据概念在中国非常热,各方面的应用也已经开始推进,最为著名的便是刚刚结束的巴西世界杯比赛的赛事预测。在其他方面,上海等大城市利用大数据进行智慧交通管理,一些电商网站也利用大数据进行客户行为和购买预测,提升了精细化营销的水平。 为集中的搜索行为和流量指向数据,所以,这些公司都拥有了很好的大数据应用的基础。
以百度为例,百度的世界杯大数据预测在巴西世界杯期间帮助很多人更好的观看比赛和预测赛果,而百度糯米的“专享座”服务更是创造了大数据趣味应用的经典之作。当然,央视与百度的合作在春节期间对春运客流的分析让很多人第一次感受到了大数据的威力,而与联合国启动战略合作共建大数据联合实验室更是开创了联合国开发计划署的先例。
什么是大数据?数据采集能力至关重要
按照百科的解释,大数据(big data),或称巨量资料,指的是所涉及的资料量规模巨大到无法通过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。
即便如此,有关大数据,也仍然没有大家都能普遍接受的统一定义。可以说,数据量大并非大数据,再大量的数据如果不能被利用也不能被称为大数据,而单一领域的大量的数据的集合更不是真正意义上的大数据。根据一般的理解,大数据应该是围绕特定的主题而将看起来毫不相干的数据集成在一起构成统一视图,然后寻找到期间合理的关联因素,从而超越简单的统计分析而得出意想不到的结论。
阿莱克斯•彭特兰教授指出了大数据应用比较成功的几个领域,包括营销场景的预测、城市管理、疾病预测、金融预测等等,这些方面都要依靠海量的数据积累和不同的客户应用场景,互联网搜索引擎具有先天优势。
百度是世界人口最多国家的最大搜索引擎,最近也在积极加强国际布局,刚刚又高调进入葡语市场,十几年来积累了大量的数据资料,这是其他互联网公司无法比拟的优势。“大数据”之“大”,更多的意义在于:人类可以“分析和使用”的数据在大量增加,通过这些数据的交换、整合和分析,人类可以发现新的知识,创造新的价值,并让很多常态化的认知、判断、思维定势、产品形态、服务模式,形成全新的面貌和演进方向。
显然,百度面向的是全网用户的全方面使用,因此是在这些领域数据资料最全的公司,最有能力展开大数据领域的探索。通过大数据的分析,百度实现了从搜信息到搜产品的转变,也在数据利用方面不断创新。
大数据不仅仅要“大”,更需要先进的数据分析与应用能力
在国内,拥有海量数据的公司不少,比如银行、航空、通信运营商,但这些公司对数据的利用显然不够,限于体制与人员结构上的问题,至今在大数据方面才刚刚起步。
互联网在这方面已经捷足先登了,腾讯阿里都有自己的大数据应用开发团队,百度在2013年初就成立了百度研究院,其中第一个重点方向的就是深度学习,并为此而成立Institute Of Deep Learning(IDL),作为大数据领域的领先研究机构,为百度这两年在大数据领域的进展做好了技术与人才准备。本次世界杯预测模型也正是由百度深度学习研究院派遣资深数据科学家协助大数据部研发团队共同构建的,其小组赛阶段的预测成功率为58.33%,淘汰赛阶段全部预测准确。
媒体报道显示,在李彦宏亲自推动下,百度深度学习研究院吸引了一大批世界级科技精英的加盟,比如前Facebook资深科学家徐伟、美国新泽西州立大学统计系教授张潼等,同时还邀请到“谷歌大脑之父”吴恩达的加盟。
大数据的应用还需要载体,不能称为无本之木
横空出世的小米手机、特斯拉的电动车、乐视的超级电视、海尔的空气盒子、引发热潮的微软小冰、热播的《纸牌屋》之类的产品,它们和传统的创新型产品似乎并无很大差异,但背后其实都有大数据应用的影子。以大悦城为例,当消费者想去一个商家,百度会通过大数据存储和分析告诉他,这个商家在几层,里面有多少人;消费者想离店,百度地图将指引具体路线、怎么去停车场,更准确地找到自驾车辆。
大数据的价值要通过相应的产品体现出来,比如,智能可穿戴设备就离不开大数据的应用,否则将变成死气沉沉的玩具。在大数据的利用上,国内比较成熟的领域包括互联网金融方面的风险控制、网购领域的智能推荐以及物联网交通管理等,比较成功的产品有阿里巴巴的余额宝、咕咚智能手环、百度的百度指数等。
在大数据的应用上,百度可以说是不遗余力。实际上,百度也早已超越搜索,成为集合网页、贴吧、图片、知道、新闻等优势资源的跨屏整合营销平台,覆盖了网友所有的关键营销时刻百度通过“知心搜索+轻应用+语音搜索+LBS方圆定位技术”等技术,百度正努力实现“让搜索引擎像人脑一样智能”。数据显示,2013年百度净利润有三分之二支出具有“科技感”的移动项目上,智能手环、智能手表、电子秤等等都有涉及,还据说在研发无人驾驶自行车。
总体上说,大数据的发展需要扎扎实实的应用,不能总是玩概念,更需要多方面的积累资源提升技术水平,在数据存储、数据分析和应用场景上不断开拓创新,如此才能真正触摸到大数据的灵魂。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10