
事实上,大数据无需白手起家_数据分析师
是时候从更高的视角来看待大数据了。大数据以及数据科学还在持续升温,如何更好地利用大数据隐含的价值成为焦点话题。然而在不知不觉中,我们所关注的范围变得越来越窄,比如如何存储海量数据,如何用新的方式来分析数据,我们只关注技术而忽视了大数据以及数据科学在业务语境中所起到的作用。
如果想让大数据和数据科学为我们更好地服务,我们就需要更广阔的视角,比如:
大数据就只是数据而已,要处理好所有的数据,什么样的技术是最佳的技术?
大数据只是拼图游戏的一部分,要最终得到完美的图画,需要我们思考如何将大数据与现有分析系统紧密集成,从而得到最大产出。
大数据需要融入业务才能改善业务,我们如何才能利用大数据创造更好的产品与服务?
对大数据的狭隘思维主要来自于错误的判断。在技术方面,由于出现了包括Hadoop、NoSQL在内的许多新一代大数据技术,于是人们开始认为,只要有了这些技术就可以让数据管理变得简单许多。还有一部分人认为,要利用这些新技术就必须把原有的技术抛开,重新打造一个系统。
人们总是喜欢这样孤立地思考大数据问题,就比如说数据科学家。前两年有这样一种说法,即数据科学家是21世纪最性感的职业,就好像企业需要这么一个神奇的炼金术师,把纷繁复杂的信息提炼成价值连城的金块。事实上,无论是数据科学家还是数据科学团队都不可以独立于其他部门而自立门户,因为要充分理解业务,他们就必须与企业其他部门的员工形成良性互动。
大数据以及数据科学需要渐进式的发展,无论新的技术还是新的流程,都要先融入到已有的系统当中。也就是说,推倒重来的做法是绝对错误的,我们需要通过新的技术与方法来不断改进现有的分析模型,随着数据的持续增长来丰富这些模型。
对于大数据,你需要认识到以下几点事实,真假大数据就蕴含其中:
新的能力并不意味着我们要按下重启键然后重新来过,我们仍然需要从企业应用系统中获取数据然后为业务构建一个完整的结构化模型。我们需要将信息作为资产妥善管理起来。我们需要控制数据的访问来保护隐私并确保合规。我们也需要让人们能够尽可能多地对想要的数据进行探索。
换句话说,大数据和数据科学家并不意味着我们要抛弃已经建立起来的商业智能系统和规范。我们已经知道如何把工作做得更好,现在只是在这一基础上添加一些新的能力而已。
然而只有少数公司能满足自身使用数据的状况,只有三分之一不到的员工会用到BI工具。这其实还有很大的提升空间,启动一个大数据项目也不会立马清除用户利用数据的障碍。为了能够取得进展,我们需要试着回答两个问题:
对于大数据狭隘的思维总会忽略上面的两个问题。我们需谨记,大数据并不是一门技术那么简单,它有自己的概念(3个V),有独特的用例,有自身的架构,也有专门的人(数据科学家)来处理数据。大数据并不是一项运动,也不是企业内部根深蒂固的思维,它代表的东西更多,我们需要站在更高的角度来看待大数据。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26