
利用机器大脑挖掘数据金矿,从大数据到大行动
人工智能的发展是否会让机器大量取代人类的思考和工作,现在难以定论是非,但目前我们至少可以利用人工智能来帮助我们挖掘数据的金矿,让我们通过数据理解自我和世界。这也和TED创始人、被誉为“信息架构之父的” 理查德•沃曼(Richard Saul Wurman)曾表达的观点不谋而合。
日前,在百度德尔塔俱乐部组织的交流活动中,针对如何洞察数据和世界、如何利用科技增进人类相互了解等问题,百度研究院副院长余凯博士和理查德•沃曼展开了一次智慧交锋。余凯表示,“数据给了我们很多机遇,尤其是人工智能在过去10年的发展中,让我们意识到数据可以在许多领域产生新的玩法。”
余凯之所以会对数据有此洞见,是出于多年来在机器学习和数据挖掘等人工智能领域的钻研。他曾受邀在美国斯坦福大学主讲人工智能课程,一直从事深度学习等领域的核心技术研发和团队管理。他曾带领百度多媒体部大力推进公司在图像和语音技术方面的研发。他所领导的百度深度学习研究院(IDL - Institute of Deep Learning)于2013年成立,成为与IBM、谷歌、微软所设研究机构齐名的全球著名研究机构之一。值得一提的是,他所领导的项目团队在短短两年里已经三次问鼎百度最高奖。
如今在百度,深度学习已经被成功用于凤巢广告系统,网页搜索,语音识别,图片搜索等方方面面。百度语音识别的准确率已达到94%,图片搜索的准确率也达到80%,均处于业界领先水平;在人工智能领域,百度大脑拥有200亿个参数,超越谷歌大脑,构造起世界上最大的深度神经网络。
沃曼认为,对大数据的分析利用应该进一步准确定义为“大理解”。在他看来,尽管今天很多人提到“信息爆炸”,但事实上人类在很多领域对数据的理解并不够深入,如在城市信息化、金融、医疗等领域,数据可以帮助我们把复杂的事情变得简单。
一直在深度学习领域钻研的余凯深有感触,但余凯也提到,“虽然数据是真实的,但是它会具有偏向性,不同的分析方式,会有不同的解读,所以它可能不会是完全客观的。要审慎的用正确方法处理数据,才能获得正确的信息。”
深度学习领域的探索依赖于足够大体量的数据和聪明的工程师。一方面,百度在过去多年发展中,在“数据采集”和“数据加工”领域积累了丰厚的家底,并且移动互联网的广泛普及使得百度能从更多维度去获取数据,如移动搜索方面的用户搜索习惯,百度地图上的LBS数据,智能硬件方面的人体健康数据等。另一方面,百度在深度学习领域的投入也包括吸引一大批世界级科技精英加盟,包括“谷歌大脑”之父吴恩达教授,前Facebook资深科学家徐伟、美国新泽西州立大学统计系教授张潼、前AMD异构系统首席软件架构师吴韧等,使其成为业界推动“大数据驱动的人工智能”的领导者之一,位列深度学习研究的第一阵营。
对话中,沃曼不止一次提到自己的“好奇心”,称正是好奇心驱动他创办了TED,以及后来备受推崇的“用思想的力量来改变世界”的TED大会。如今年近八旬的沃曼仍然保持着探索未知的热情。沃曼说,当前,全球人口的50%在城市里生存。未来这一数字将达到70%。云和大数据是我们理解数据的方式之一。我们希望为城市设计这样一种语言,使得大家可以互相交流、理解。
对此,余凯表示,百度研究院不仅致力于深度理解大数据,更在逐步将大数据转变为“大行动”, 只有行动,科技才真正改变世界。例如自去年春节期间推出“百度迁徙”之后,百度大数据部联合大数据实验室陆续推出了景点城市预测、疾病预测、高考预测、世界杯预测、经济预测、百发100指数等多款大数据产品,内容涉及出行、体育、宏观经济、股市行情的多个领域,成为全球范围内大数据落地产品最多的一家互联网巨头。甚至有人将其和IBM、谷歌共同列为全球大数据三巨头,并称“BIG”。而在今年的世界杯预测中,百度更以58.33%的小组赛预测准确率和93.75%的淘汰赛预测准确率,领先其他两家巨头。
余凯看好技术对世界的改变。随着百度深度学习团队在深度学习领域的耕耘,他们所开发技术广泛应用于百度的凤巢系统,网页搜索,手机百度,图片搜索,百度翻译、涂书笔记,百度魔图、百度识图等产品,在改变人们的思想和行为,增进人们对世界的了解。近期百度深度学习研究院更是陆续曝出开发无人驾驶自行车和汽车的消息,为人们未来的自由沟通、自在出行打造更大的想象空间。余凯谈到未来团队的使命时表示,“我们希望通过百度的服务和产品,让用户每天的生活充满意义,不仅如此,我们想要用技术让每一个人普通人更有创造力,更伟大。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13