
大数据技术论坛(上):Spark、Hadoop技术成主角
2014年12月12-14日,由中国计算机学会(CCF)主办,CCF大数据专家委员会承办,中科院计算所与CSDN共同协办,以推进大数据科研、应用与产业发展为主旨的2014中国大数据技术大会(Big Data Tec就hnology Conference 2014,BDTC 2014)暨第二届CCF大数据学术会议在北京新云南皇冠假日酒店盛大开幕。
2014中国大数据技术大会第二日上午大数据技术论坛上,百度大数据部副总监薛正华和中国移动集团公司业务支撑系统部项目经理何鸿凌共同主持了上午的论坛。网易NTSE/TNT引擎负责人胡炜、英特尔大数据首席架构师戴金权,VMware资深业务解决方案架构师介文清,搜狐移动研发部经理刘佳, Admaster技术副总裁卢亿雷5位专家主要专注于大数据技术展开演讲。
大数据技术论坛主持人:百度大数据部副总监 薛正华
大数据技术论坛主持人:中国移动集团公司业务支撑系统部项目经理 何鸿凌
胡炜:网易数据库压缩技术
12月14日,在大数据技术论坛上午的演讲中,网易NTSE/TNT引擎负责人胡炜发表主题为“网易数据库压缩技术”的演讲。胡炜认为理想中的压缩技术应该是无论你提供哪种压缩技术,它都应该是智能化的、在数据的压缩、解压以及在压缩数据访问达到高效率、无论用什么方式去压缩和解压,都要保持灵活性。
网易NTSE/TNT引擎负责人 胡炜
对于数据库压缩特点,胡炜总结出五点:
最后,胡炜介绍网易大数据压缩方式是在全局建立字典上,通过区分数据属性进行灵活的在线压缩、解压,访问效率相比传统压缩提高2倍到10倍左右。接下来,胡炜计划通过更多的统计信息,实现采集字典的自动划分功能。
戴金权:基于Spark软件栈的下一代大数据分析
英特尔大数据首席架构师 戴金权
英特尔大数据首席架构师戴金权表示,大数据深入分析大致分为两类:类似SQL数据分析,进行关系型云运算;达到实时、快速的数据分析速度。他认为,利用Spark构建下一代大数据分析,能够为用户构建新的应用场景及新的分析应用,并举例说明Spark与SQL结构式数据结合的方式,对
Hive和Parquat进行数据处理。
介文清:12306:改变传统思路解决问题的NoSQL实践
介文清以12306为例展开演讲,介绍如何运用NoSQL建设余票查询系统、订单查询系统,并且,实现每秒1万次订单查询、余票10分钟更新一次的频率。
VMware资深业务解决方案架构师 介文清
介文清表示传统设计的系统架构无法解决,12306网站数据流量问题。系统切换时,将SQL数据库进行抽取,送到NoSQL集群中,数据量进行并行运算,开始新旧系统工作负载在90%—10%之间,运行正常之后可完全放在新系统中运行。
刘佳:基于全网内容的新闻客户端推荐系统
刘佳针对新闻客户端遇到的内容分类质量识别图文、视频、音频、游戏、数据稀疏、内容冷启动、用户冷启动、噪音处理:三俗内容等棘手问题的处理方式展开演讲。
搜狐移动研发部经理 刘佳
首先,刘佳介绍搜狐移动端新闻推荐的两个特点:
随后,刘佳介绍新闻推荐系统中三俗内容的处理方式,他说:“推荐系统出现三俗内容,可以提高18%-20%的转化率,虽然可以暂时提高点击率,但是对用户的粘性有很大的影响。我们会通用户阅读分布、用户属性分布统计性和精细化的分类进行筛选三俗内容。整体处理后,转化率下降到15%,推荐总量提升20%,用户使用频次也有20%的提升。”
卢亿雷:Hadoop在广告监测技术的实践
卢亿雷围绕广告营销数据流程、广告监测技术特点、广告监测数据差异、广告数据挖掘平台架构、ADH在广告营销数据挖掘的特、AdMaster数据分析平台六点展开演讲。
Admaster技术副总裁 卢亿雷
演讲中,卢亿雷表示,ADH是针对广告行业做出来的Hadoop,他有以下五个特点:
在广告监测数据中,卢亿雷总结出:不同IP库系统导致出现不同地域结论;监测代码部署时点的不同;监测机制和指标定义的差异;移动APP较不稳定的网络环境等是导致数据差异的主要因素。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13