
“大数据”如何打造“全民电影”(2)_数据分析师
百度商业分析部总监李忠军表示,从用户思维出发,让用户心声得以表达,并参与产品的开发,离不开便捷的数据收集、获取,以及基于大数据能力的数据挖掘和分析,百度的数据积累为全民表达和参与提供了坚实的基础。
《全民电影》项目是百度娱乐影视大数据史上最大的一次实战运用,选角模型和营销指导是核心。百度大数据将从多个维度支持《全民电影》项目,以《全民电影》总导师吴宇森举例,吴宇森导演拍部新片怎么确保选择出演的明星一定卖座?基于百度风云榜和百度指数的数据分析,百度会对明星的关注度及曝光活跃度进行客观“打分”,导演团队可以很清晰地看出每位演员的各项指数,如更受哪一地区、哪一年龄层、哪一类型影迷群体的关注,通过了解备选明星以往的商业价值和特质,以及正负面舆情监测等,吴宇森导演还可以评估其营销价值。
高宏刚表示,随着移动终端信息处理能力的提升,每个人的移动终端实际上就变成了一个数据记录仪。它比笔记本电脑所能获取到的信息更加个人化,不仅暴露这个人的生活细节,位置动向,同时也记录着他的消费习惯,人类第一次拥有了这么多数据的生产者。未来的市场都是由一个个用户构成,在一个项目运行之初无论是他的全媒体概念还是用户概念,都会和大数据统计结合在一起。《全民电影》在客观数据指导下,会少走弯路,赢得更多用户的喜欢,获得更大的市场。除了选演员,票房投资回报也是导演和投资人关心的话题,百度娱乐影视大数据可以对主创团队历史投资回报表现进行分析,预估人员对票房的贡献力,同时将影迷数据与潜在市场做匹配,来指导市场排片,预测契合度、优化营销活动。
创作者把握受众注意力走向
大数据将电影带往何方?
在未来,大数据具体到一个电影项目里,会提供哪些数据支撑或者决策服务呢?百度相关技术负责人表示:从目前来看,总的来说,大数据技术可以挖掘数据背后的真实含义,更精准地还原群体的面貌并时刻把握网民注意力的走向。可以说,数据对市场精准专业的洞察,可以为一部电视剧的全制作过程提供决策支持,其中包括剧本创作、主创组队、营销分发、收视监测。例如电影《小时代》利用大数据,精准地对观众群体进行分析,它关注了9万用户的新浪微博,对微博使用人群进行深入分析。调查数据显示,在9万微博用户中,81%是女性,19%是男性;平均年龄20岁左右,喜欢看《快乐大本营》《非诚勿扰》等电视节目。而这也正是适合《小时代》的受众群体。
从大数据技术介入影视业那天起,大众便对数据的预测分析能力有了超高的期待,同时对数据预测应用也有争议,比如隐私、安全等话题。针对这些问题,该负责人解释:这里需要探讨的是预测分析的原理以及合理利用。
首先,“数据挖掘”,预测分析是“提炼”信息,是一种归纳总结的分析,试图从海量信息中找出普遍适用的规则。所以从这个角度理解预测分析,它只是一种对客观事实的归纳和演绎。
其次,预测分析无法做到预测系统性的危机,主要就是大家熟悉的“黑天鹅事件”。就是指非常难以预测,且不寻常的事件,通常会引起市场连锁负面反应甚至颠覆。在预测微观层面的趋势时,技术通过对个体的变量做分析,但是分析结果很难精确地随着宏观环境的变化、突发事件的爆发而变化。
第三,数据的价值、力量和意义让数据变得敏感。这种冲突随着数据力量的强大和数据生态的完整而愈发强烈,并且还会持续。数据技术是中性的,让技术带上利弊评价的往往不是“人们看到了什么样的信息”而是“利用信息做了什么”。在建立“公平”和“正确”的数据规则上,显然需要更多探索。但是目前数据应用基本都是为了更好地服务于这个目标。
在预测分析技术成熟的道路上,大数据可以对一部电影提供深度数据分析与策略规划支持,可以在一定程度上评估风险、规避风险。但是,数据只能显示目前大多数人的态度和选择,并不能预测未来人们会喜欢什么,也就不能提供更好的创意。从这一角度来看,基于数据技术打造的电影,更有可能只是一部“差不多”电影。至于它能否创造经典,能否给电影的品质带来革命性的未来,我们拭目以待。
链接
什么是大数据?
大数据,或称巨量资料(bigdata)、海量资料,指的是由数量巨大、结构复杂、类型众多数据构成的数据集合,是基于云计算的数据处理与应用模式,通过数据的整合共享、交叉复用,形成智力资源和知识服务能力。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10