京公网安备 11010802034615号
经营许可证编号:京B2-20210330
“大数据”如何打造“全民电影”(2)_数据分析师
百度商业分析部总监李忠军表示,从用户思维出发,让用户心声得以表达,并参与产品的开发,离不开便捷的数据收集、获取,以及基于大数据能力的数据挖掘和分析,百度的数据积累为全民表达和参与提供了坚实的基础。
《全民电影》项目是百度娱乐影视大数据史上最大的一次实战运用,选角模型和营销指导是核心。百度大数据将从多个维度支持《全民电影》项目,以《全民电影》总导师吴宇森举例,吴宇森导演拍部新片怎么确保选择出演的明星一定卖座?基于百度风云榜和百度指数的数据分析,百度会对明星的关注度及曝光活跃度进行客观“打分”,导演团队可以很清晰地看出每位演员的各项指数,如更受哪一地区、哪一年龄层、哪一类型影迷群体的关注,通过了解备选明星以往的商业价值和特质,以及正负面舆情监测等,吴宇森导演还可以评估其营销价值。
高宏刚表示,随着移动终端信息处理能力的提升,每个人的移动终端实际上就变成了一个数据记录仪。它比笔记本电脑所能获取到的信息更加个人化,不仅暴露这个人的生活细节,位置动向,同时也记录着他的消费习惯,人类第一次拥有了这么多数据的生产者。未来的市场都是由一个个用户构成,在一个项目运行之初无论是他的全媒体概念还是用户概念,都会和大数据统计结合在一起。《全民电影》在客观数据指导下,会少走弯路,赢得更多用户的喜欢,获得更大的市场。除了选演员,票房投资回报也是导演和投资人关心的话题,百度娱乐影视大数据可以对主创团队历史投资回报表现进行分析,预估人员对票房的贡献力,同时将影迷数据与潜在市场做匹配,来指导市场排片,预测契合度、优化营销活动。
创作者把握受众注意力走向
大数据将电影带往何方?
在未来,大数据具体到一个电影项目里,会提供哪些数据支撑或者决策服务呢?百度相关技术负责人表示:从目前来看,总的来说,大数据技术可以挖掘数据背后的真实含义,更精准地还原群体的面貌并时刻把握网民注意力的走向。可以说,数据对市场精准专业的洞察,可以为一部电视剧的全制作过程提供决策支持,其中包括剧本创作、主创组队、营销分发、收视监测。例如电影《小时代》利用大数据,精准地对观众群体进行分析,它关注了9万用户的新浪微博,对微博使用人群进行深入分析。调查数据显示,在9万微博用户中,81%是女性,19%是男性;平均年龄20岁左右,喜欢看《快乐大本营》《非诚勿扰》等电视节目。而这也正是适合《小时代》的受众群体。
从大数据技术介入影视业那天起,大众便对数据的预测分析能力有了超高的期待,同时对数据预测应用也有争议,比如隐私、安全等话题。针对这些问题,该负责人解释:这里需要探讨的是预测分析的原理以及合理利用。
首先,“数据挖掘”,预测分析是“提炼”信息,是一种归纳总结的分析,试图从海量信息中找出普遍适用的规则。所以从这个角度理解预测分析,它只是一种对客观事实的归纳和演绎。
其次,预测分析无法做到预测系统性的危机,主要就是大家熟悉的“黑天鹅事件”。就是指非常难以预测,且不寻常的事件,通常会引起市场连锁负面反应甚至颠覆。在预测微观层面的趋势时,技术通过对个体的变量做分析,但是分析结果很难精确地随着宏观环境的变化、突发事件的爆发而变化。
第三,数据的价值、力量和意义让数据变得敏感。这种冲突随着数据力量的强大和数据生态的完整而愈发强烈,并且还会持续。数据技术是中性的,让技术带上利弊评价的往往不是“人们看到了什么样的信息”而是“利用信息做了什么”。在建立“公平”和“正确”的数据规则上,显然需要更多探索。但是目前数据应用基本都是为了更好地服务于这个目标。
在预测分析技术成熟的道路上,大数据可以对一部电影提供深度数据分析与策略规划支持,可以在一定程度上评估风险、规避风险。但是,数据只能显示目前大多数人的态度和选择,并不能预测未来人们会喜欢什么,也就不能提供更好的创意。从这一角度来看,基于数据技术打造的电影,更有可能只是一部“差不多”电影。至于它能否创造经典,能否给电影的品质带来革命性的未来,我们拭目以待。
链接
什么是大数据?
大数据,或称巨量资料(bigdata)、海量资料,指的是由数量巨大、结构复杂、类型众多数据构成的数据集合,是基于云计算的数据处理与应用模式,通过数据的整合共享、交叉复用,形成智力资源和知识服务能力。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12