
美军把大数据分析引入作战(1)_数据分析师
信息技术带给现实世界的最大变化之一就是万物皆可数据化,这使人们更加坚信“世界的本质是数据”“数据将会改变世界”,大数据标志着信息社会终于名副其实。大数据时代的到来会深刻地改变整个世界,也会改变人类的思维方式,同样也会改变战争。
机器人、自治系统、小型化、大数据和三维技术将是未来海上作战重点发展领域。美国海军既注重与传统的武器制造商如洛克希德·马丁公司紧密合作,同时也在寻求与谷歌等商业公司的合作,以提高未来海上作战的能力。近年来,美国海军与洛克希德·马丁公司、高校以及谷歌和IBM等IT企业合作,从而引领海军技术进入大数据时代。大数据来源众多,以惊人的速度、数量和种类发展,这就使得使用现有技术分析非常困难,特别是借助iPhone等现代触屏科技产品将产生新的大量数据,并可智能操控、无人操控。美国军方一些高级研发人员表示,他们尤其对海军舰艇的控制台感到不满,对于平均年龄18岁,在成长过程中一直伴随着iPhone和iPad等现代触屏科技产品的水兵而言,这些控制台的操作并不直观。他们建议,海军习惯于对那些从小就学会使用iPhone的新兵说“忘了iPhone吧,我要教你如何使用操纵杆”,试图用新兵所熟悉的现代科技(包括大数据、云计算等)来取代操纵杆式的陈规旧习。长期以来,美国海军舰载传感器、飞机和其他平台产生大量的数据,但是这些数据没有被有效地利用,需要大量的人力。美国海军通过整合这些类型的信息支持战术作战的能力非常有限。美国海军研究局(ONR)称,目前,机载、舰载和其他部署的系统产生了大量数据,想要在作战环境中利用全部数据已经变得很困难。
战场数据集成是大数据技术军事领域运用的关键,随着云计算、通信、媒体和移动计算的快速发展和深入应用,战场的数据量还将快速增长。大数据时代最大的亮点就是人和社会的计算,越来越多的问题都将通过计算得到解决。大数据是指人类有前所未有的能力来使用海量的数据,在其中发现新知识、创新新价值,从而为社会带来“大知识”“大科技”“大变革”和“大智能”等发展机遇。大数据时代通常具有四大特征:一是数据量大,数据量级已从TB发展至PB乃至ZB,可称海量、巨量乃至超量。二是多样化,数据类型繁多,多为网页、图片、视频、图像与位置等半结构化和非结构化数据信息。数据品类将极其混杂,关联度一般极低,而且在相当长的时期内非结构化数据会占据大数据的主体。三是处理快速化,数据流往往为高速实时数据流,而且往往需要快速、持续的实时处理;处理工具亦在快速演进,软件工程及人工智能等均可能介入。四是价值高和密度低,大数据往往意味着极高的价值,但同其体量一样,正是因为极小价值的海量汇合,才形成了大数据的高价值。现在随着各项创新技术的汇集,大数据展现出了大量的新机会,特别是军事领域的运用。这些趋势决定着最重要的战场需要,可视化战场要求军队数据处理高速化、精准化以保持战斗力,武器装备信息整合要求在数据合并后能成功地集成。
美国奥巴马政府在获得连任后不久就宣布投资2亿美元拉动大数据相关产业的发展,将“大数据战略”上升为国家意志。美国政府和军方都明确表示,国家拥有数据的规模、活性及解释和运用将成为综合国力的重要组成部分,对数据的占有和控制甚至将成为海权、空权、陆权之外的另一种核心资产。因此,未来战争与其说是石油战争不如说是大数据战争。美国海军通过采用突破性的分析工具建立海军大数据生态系统来解决此问题。美国海军希望寻求利用大数据增强作战能力的方法,通过整合IT系统数据和作战系统传感器获得实时结果,利用云计算和大数据技术发展作战工具。例如,允许指挥官在船上查看仪表盘,能够实时跟踪任务中发生的一切,掌握预期的变化情况,并推测可能的结果。
目前,美国海军主要集中在两个领域即反潜作战和一体化防空反导系统,来提升大数据对作战的效果和能力,寻求增强威胁评估预警、作战识别、一体化作战和任务计划以及执行能力。美国海军主要在以下四个方面开展研究:建立海军数据科学通用的基础体系架构,用于不同机构间数据表征和共享;引入数据源并建立索引,通过海军的云环境利用大量的数据集合;进行海军作战分析,开发先进的分析工具支持作战,特别是反潜作战和防空反导作战;利用云计算的安全性和完整性,增强海军防御能力。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28