京公网安备 11010802034615号
经营许可证编号:京B2-20210330
美军把大数据分析引入作战(1)_数据分析师
信息技术带给现实世界的最大变化之一就是万物皆可数据化,这使人们更加坚信“世界的本质是数据”“数据将会改变世界”,大数据标志着信息社会终于名副其实。大数据时代的到来会深刻地改变整个世界,也会改变人类的思维方式,同样也会改变战争。
机器人、自治系统、小型化、大数据和三维技术将是未来海上作战重点发展领域。美国海军既注重与传统的武器制造商如洛克希德·马丁公司紧密合作,同时也在寻求与谷歌等商业公司的合作,以提高未来海上作战的能力。近年来,美国海军与洛克希德·马丁公司、高校以及谷歌和IBM等IT企业合作,从而引领海军技术进入大数据时代。大数据来源众多,以惊人的速度、数量和种类发展,这就使得使用现有技术分析非常困难,特别是借助iPhone等现代触屏科技产品将产生新的大量数据,并可智能操控、无人操控。美国军方一些高级研发人员表示,他们尤其对海军舰艇的控制台感到不满,对于平均年龄18岁,在成长过程中一直伴随着iPhone和iPad等现代触屏科技产品的水兵而言,这些控制台的操作并不直观。他们建议,海军习惯于对那些从小就学会使用iPhone的新兵说“忘了iPhone吧,我要教你如何使用操纵杆”,试图用新兵所熟悉的现代科技(包括大数据、云计算等)来取代操纵杆式的陈规旧习。长期以来,美国海军舰载传感器、飞机和其他平台产生大量的数据,但是这些数据没有被有效地利用,需要大量的人力。美国海军通过整合这些类型的信息支持战术作战的能力非常有限。美国海军研究局(ONR)称,目前,机载、舰载和其他部署的系统产生了大量数据,想要在作战环境中利用全部数据已经变得很困难。
战场数据集成是大数据技术军事领域运用的关键,随着云计算、通信、媒体和移动计算的快速发展和深入应用,战场的数据量还将快速增长。大数据时代最大的亮点就是人和社会的计算,越来越多的问题都将通过计算得到解决。大数据是指人类有前所未有的能力来使用海量的数据,在其中发现新知识、创新新价值,从而为社会带来“大知识”“大科技”“大变革”和“大智能”等发展机遇。大数据时代通常具有四大特征:一是数据量大,数据量级已从TB发展至PB乃至ZB,可称海量、巨量乃至超量。二是多样化,数据类型繁多,多为网页、图片、视频、图像与位置等半结构化和非结构化数据信息。数据品类将极其混杂,关联度一般极低,而且在相当长的时期内非结构化数据会占据大数据的主体。三是处理快速化,数据流往往为高速实时数据流,而且往往需要快速、持续的实时处理;处理工具亦在快速演进,软件工程及人工智能等均可能介入。四是价值高和密度低,大数据往往意味着极高的价值,但同其体量一样,正是因为极小价值的海量汇合,才形成了大数据的高价值。现在随着各项创新技术的汇集,大数据展现出了大量的新机会,特别是军事领域的运用。这些趋势决定着最重要的战场需要,可视化战场要求军队数据处理高速化、精准化以保持战斗力,武器装备信息整合要求在数据合并后能成功地集成。
美国奥巴马政府在获得连任后不久就宣布投资2亿美元拉动大数据相关产业的发展,将“大数据战略”上升为国家意志。美国政府和军方都明确表示,国家拥有数据的规模、活性及解释和运用将成为综合国力的重要组成部分,对数据的占有和控制甚至将成为海权、空权、陆权之外的另一种核心资产。因此,未来战争与其说是石油战争不如说是大数据战争。美国海军通过采用突破性的分析工具建立海军大数据生态系统来解决此问题。美国海军希望寻求利用大数据增强作战能力的方法,通过整合IT系统数据和作战系统传感器获得实时结果,利用云计算和大数据技术发展作战工具。例如,允许指挥官在船上查看仪表盘,能够实时跟踪任务中发生的一切,掌握预期的变化情况,并推测可能的结果。
目前,美国海军主要集中在两个领域即反潜作战和一体化防空反导系统,来提升大数据对作战的效果和能力,寻求增强威胁评估预警、作战识别、一体化作战和任务计划以及执行能力。美国海军主要在以下四个方面开展研究:建立海军数据科学通用的基础体系架构,用于不同机构间数据表征和共享;引入数据源并建立索引,通过海军的云环境利用大量的数据集合;进行海军作战分析,开发先进的分析工具支持作战,特别是反潜作战和防空反导作战;利用云计算的安全性和完整性,增强海军防御能力。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20