
数据大未必是大数据 三谈大数据时代_数据分析师
前不久写了一篇《迎接大数据时代》的文章,发表后颇有反响。一些朋友找我去开这方面的会,一些媒体采访发这方面的文章,一些资本想找这方面的项目投入。这可有点似曾相识燕归来的感觉了。当年写过关于WEB2.0革命,写过网络平台,写过开放,业内和社会上也都有过类似反应,想搭顺风车,混吃混喝的大有人在。为了避免以往悲剧的产生,减少鱼龙混杂,以假乱真的现象,只好多写几篇这方面的感想,权作免责条款吧。
极而言之,如果全世界网民的网络行为记录都能紧密整合在一起,那当然称得起大数据这个名称。反之,如果只有一个网民的一条孤零零网络记录,那当然撑不起大数据这个概念。问题在于如何在这两个极端之间,找到一个划分大数据与否的区分点,或者找到一组指标,能够具体衡量数据量从量变到质变的相对标准。这无论在学术研究上或是在商业实战上都很重要。试想若是某个公司自认为自己网络服务产生的数据量很大,觉得可以自称大数据公司了。于是说服董事会和投资者加大这方面的投入,购买大批专用设备和第三方专业服务,组建这方面的团队。经过一段时间的实践,发现投入产出不成比例,建立在大数据基础上的商业模式和产品服务研发不能得到理想的回报,那岂不是个悲剧?
以我的观察和实践经验,网络业中一个公司是否称得起拥有大数据至少要从三个维度考量:
数据规模----所谓大数据最基本的要求当然是数据规模大,但很难给出一个绝对的数字标准来确定大小,而只能用一些模糊的感觉来相对比较。例如,一个公司在年度预算中有了专门的,显著的数据存储和分析预算(例如,总预算的3-5%),有了独立的数据处理和分析部门,有了比较完整的数据存储,安全和保密政策与管理流程,有了高度依赖数据分析结果的商业模式,那么,可以说这个公司面临着利用大数据的机会或挑战了。
数据结构----数据量只是反映数据性质的一个指标,也许还不是最重要的指标。一天产生一百万个T数据的公司也许算不上大数据公司,而另一个一天只产生一万个T数据的公司也许反而是个大数据公司,其奥妙在于数据结构的复杂性。例如,A公司拥有一亿用户,但用户在A公司网站上只干一件事或一类事,比如获取新闻资讯,买买东西,或者玩玩游戏。那么由此产生的数据量虽然不小,但结构简单,重复性高,分析起来很容易,无非就是根据用户背景和使用习惯分分组,归归类,简单数据挖掘基本功足够,扯什么大数据就有点故弄玄虚了。B公司只有一千万用户,却是个开放平台,用户在此可以干互联网能够支持的所有事情,网络行为又可分为个人,群体,组织等层次,那么这个数据的结构就够复杂,能够支持深度挖掘和复杂建模,因而就可以算作大数据。
数据关联度----网络业一个常见现象就是随着数据量的增加,用户行为所产生的数据间的关系越来越不清晰,越来越难以捉摸,越来越相互孤立,也就是所谓的数据碎片化。这种碎片化主要来自两个方面:一是网站结构碎片化,逻辑混乱化,各种产品与服务之间相互孤立化,因而导致数据之间关系断裂,关联度很低。例如,明明是同一个用户在一个网站上使用了十种不同的产品和服务,但由于其中五种无需注册使用,其他五种又需要分别注册使用,结果这十种网络行为的数据无法整合在一起,或者需要通过种种技术手段和工具进行高成本的数据整合,以至于入不敷出。这也就减少了数据的含金量,降低了数据的可挖掘度,使得无论数据量如何大,结构如何复杂,也形成不了大数据。反之,如果一个WEB2.0时代的开放平台,架构清晰,逻辑分明,用户与用户,用户与用户行为,行为与行为之间都具有确定的关联性,那么这样的数据就具有极高的含金量,极高的分析挖掘价值,也就可以形成大数据。
所以,简而言之,大数据与否取决于数据规模,结构复杂性和关联性,简单地说某个公司的数据量大并不等于说这个公司具备拥有和利用大数据的前景。例如,直到google+诞生前,谷歌就不能声称自己是个大数据公司,因为它的海量搜索数据虽然规模庞大,但结构简单。尽管听说它的搜索算法已经囊括了六万多个变量,成千上万的数学和统计学模型,上千的博士和工程师参与分析,但在数据挖掘深度,搜索结果个人化,搜索结果与广告之间的相关度上进展有限,只有改良,没有突破。更严重的是,谷歌数百个产品和服务之间相互关联度极低,各干各的,无数数据库互不相干。各个部门之间以邻为壑,互不配合,更不整合。所以,面对以FACEBOOK和苹果为代表的WEB2.0时代以及由此产生的大数据战略机会,谷歌若干年来束手无策,只能靠不断扩展产品线对付。如果直到两年前谷歌还算不上大数据公司,那些自认为自己有点数据,或者会点加减乘除,或者以为掌握一些基本的数据库技术和KNOWHOW就可以招摇过市,到网络业和资本界呼风唤雨,是不是有点不知深浅,过于幼稚了呢?
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29