京公网安备 11010802034615号
经营许可证编号:京B2-20210330
滴滴打车“滴米调度室”上线 大数据优化出行体验
12月23日,滴滴打车方面透露,经过两个多月的公测,滴滴的“滴米”调度系统正式上线。该系统可以有效规避司机“挑肥拣瘦”、最大程度让乘客订单呼叫都得到满足,让乘客获得更好的出行体验。
据介绍,依靠“滴米”系统,滴滴打车成功地保证了用户“打上车”的基本需求,即便在今年打车软件竞争激烈的“双十二”,滴滴用户打车成功率也达到了90%。
“滴滴的核心是大数据”,滴滴打车CTO张博告诉记者,“滴米调度系统正是基于大数据优势而生,通过这些优势去创造更多的社会价值是滴滴一直追求的”。
此外,张博还透露,滴滴打车很快将采用技术手段,通过“中间号”的方式以双向保护司机和乘客的手机号隐私,这个“中间号”大概只能在半小时内打通,让乘客投诉司机不规范等行为时无后顾之忧。
“保证用户打到车”
“作为滴滴公司重要的创新之一,‘滴米’极大的优化城市出租车的调度效率,进一步提升消费者的打车成功率,从而为消费者带来更好的出行体验。”12月23日,滴滴公司CTO张博在媒体沟通会上说。
据了解,“滴米”系统是滴滴公司依靠大数据的掌握,而首创的一种调度方式。滴滴公司招募了世界上最出色的大数据、算法专家,组建了一支超过800人的技术团队,并与一些高校和科研机构合作,推出相当于“调度室”功能的滴米系统。
“‘滴米’在司机端的体现是一种虚拟积分。对于司机来说,行驶里程多、道路状况好的‘好单’会扣除滴米,而行驶里程较少、道路状况拥堵的“坏单”的司机则会奖励‘滴米’。如果乘客发出叫车需求,而此时有两辆车与乘客的距离是一样的,那么司机谁的‘滴米’多,就是谁获得这个订单。这就鼓励司机为接到‘好单’而多累积‘滴米’。张博说。
张博表示,滴滴之所以推出“滴米”,主要是期望解决传统出租车行业运营规则中的通病——出租车行业原有的调度系统多年来仍作用有限,并不能解决司机拒载的问题。即便在打车软件出现后,也出现了“好单”都在抢,但“差单”却无人接的问题,司机间都是在比拼手机速度和网络速度。
据悉,今年10月份,滴滴首次推出“滴米”系统进行公测,两个月来取得了良好的效果。除了引导司机更好地投入到打车服务中,满足乘客最基本的“打上车”需求,“滴米系统更重要的社会属性在于,有效地调度了超过百万人的司机群体,推动出租车行业的不健康竞争向良性竞争转变,极大提升了城市出租车调度效率。
“好功能受益大数据”
张博向记者介绍,滴滴打车之所以能够推出滴米系统,这与公司长期积累的大数据优势有着莫大的关系。
据悉,在滴米系统中,系统首先要评判一个订单价值的高低,这就需要大量数据的支撑。在订单产生的时候,系统会第一时间根据订单的实际情况(路程远近、拥堵状况、历史订单)来预估这个订单的价值。如果这是一个不受司机欢迎的订单,系统就会以奖励滴米的方式激励司机抢单。如果这是一个非常受司机欢迎的订单,系统就会扣除抢单司机的滴米。“滴米就像滴滴系统中的虚拟货币,在发放的环节,大数据发挥了很大作用。”
在张博看来,正因为大数据的优势,滴米调度室与传统的出租车调度有了根本区别。“比如说,滴米调度系统可以知道哪一位司机在哪一个时刻接了一个什么样的订单,可以判断这个订单的价值高低,这是传统的出租车调度系统不具备的”,张博指出,“更重要的是,我们能够通过大数据的不断积累,掌控未来订单的分配。我们不断的记录司机的行为,司机是接了好的订单还是差的订单,是不是提供了好的服务,都会被记录下来。然后我们通过这些记录,去评估司机的贡献,反过来再让司机收益”。
在日常的出行中,司机和乘客在地域上的分布往往是不均匀的,一些地方乘客打不到车,一些地方司机拉不到客。而透过大数据,乘客的需求却可以被预测,张博向记者介绍,“比如晚上10点至11点左右,北京三里屯的乘客数量会激增。这样的例子不胜枚举,我们可以向司机提供全天的订单分布预测情况,根据司机所处的位置,提示司机在未来多长时间会遇到订单数量较少的情况,或提醒司机提早前往订单数量较多的地域。”
而在这样的预测与提醒下,有50%的司机愿意听从提醒前往那个目的地,有80%的司机认为这个信息有用。“这就是大数据创造的社会价值,是滴滴一直追求的。随着数据的不断积累,我们对用户出行的理解也会越来越深,它的价值也会不断放大”,张博强调。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05