京公网安备 11010802034615号
经营许可证编号:京B2-20210330
CIO们最应该消除的八个大数据神话_数据分析师
Gartner分析师Mark Beyer认为:企业CIO们如果想在2020年实现大数据常态化,那么就要从消除关于大数据的八个神话开始。
让十位首席信息官去定义大数据,你会得到十个不同的答案。 Gartner分析师Mark Beyer说,这是因为大数据对企业的IT专业人员来说仍然并不规范。
Beyer在今年Gartner的Symposium / ITxpo会议上说。“当事情变得很常见,那它就开始正常化了,我们的工作,作为IT专业人士,就是在2020年前使大数据变得正常化。”
首席信息官们可以通过从大数据谎言中区分出事实,来帮助他们的企业一步步走向正常。 “神话有助于缓解焦虑,而无益于实际情况,”他说。
这里是Beyer提出的八个大数据神话:
1.大数据起始于100 TB.不要再去寻觅大数据标准尺寸了,因其并没有标准尺寸。 “大数据是对数据的处理,而不是数据的大小,”Beyer说。
2.想要大数据就必须更换基础设施。 “如果我因为有新的需求就决定改变整个基础架构,那我是把之前所有的东西都当做了赌注,”Beyer说。他的经验教训是什么? “你要搞清楚,(基础设施)成熟度牺牲的风险是否值得。”
3.百分之八十的数据是非结构化的。这可能是最经常被引用的大数据统计了,但根据Beyer所说,其并不准确。 “世界上最大的信息资产是机器数据。因为其并未相互关联就说它们非结构化绝对是个谎言。机器数据是结构化的数据。” 顺便说一句,这些大量的机器数据,往往是重复的信息,确认了一切的正常。“这就是机器数据通常所表达的,”他说。
4.工具将取代数据科学家。放心,所有花在吸引,拉拢,获取数据科学家上的钱都不会白花,Beyer说。“工具是一种工程,工程是对已经发现的事实的重复利用。而科学是去发现新的事实。”工具不会取代数据科学家 - 至少在工具可以自行复制和发展之前不会。
5.更多的数据就可以解决数据质量的问题。 “数据质量越低,答案质量就越低,”Beyer说。首席信息官们应该关注数据质量。以通过手机收集的气质地理定位数据为例,有些人把手机等同于真实的个人,他说。然而,手机可以被不小心留在办公室,或者GPS功能可以在任何时间点被关闭。“手机不是人,”Beyer说。
6.实时只是速度更快而已。实时操作,并不意味着加快了当前数据的摄入清理和分析过程,Beyer说。而是“确保数据收集和决策之间的间隔越短越好,”他说。此外,大多数企业数据是不需要实时操作的。
7.数据量优于专业知识。那些认为可以简单地不再管业务流程的人,请再想一想。这是因为,“一位好的数据科学家必须在某一时刻被叫停”,Beyer说。如果没有业务流程,数据科学家将不断不断不断的进行下去而不能提供商业价值。需要有人帮忙划清界线。
8.数据模型没有用。这一论断很绝对。不过,Beyer澄清说,任何数字资产里的东西都有其数字模型。“我们不会因为大数据就舍弃模型,”他说。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27