
2014年关于大数据的12个预言:至少会有一家NoSQL公司成功上市
大数据是2013年的最热门词汇之一,但是2014年大数据将会如何演变呢?美国CIO.com网站从12各方面对来年大数据技术和市场的发展及演变做出了自己的预测。
“大数据”已成为2013年使用频率最高的技术热词之一。相应的市场也在这一年中出现了迅速增长。和大数据相关的Hadoop及其生态系统已经从原先只有非常天才的程序员和工程师才会使用的技术变成了数据科学家们的常用工具。越来越多的企业开始拥抱大数据技术,并将大数据应用引入生产环境中。
那么,2014年的大数据将会如何发展呢?这里给出的便是大数据明年可能划出的12个预言轨迹。
2014年,“大数据”作为一个技术热词的吸引力将会消散,人们会更关注大数据本身的价值所在。例如Gainsight公司就在其IaaS平台中利用大数据分析提供所谓“客户成功管理”服务。Gainsight相信,在2014年,每家云应用提供商都将会在其后端的基础设施中支持大数据。
云环境并非大数据技术唯一可以一显身手的地方。2014年,Hadoop将会从数据批处理和存储转向通用目的的计算基础设施,从而成为企业数据架构的核心组件。这意味着数据分析将会继续成为大数据的首要应用。
各类企业正计划认真对待其客户们在与产品客服以及在线客服互动时所留下的所谓数字“面包屑”痕迹,并从中寻找到有价值的内容。而为了实现这一目的,数据分析能力就必须越出BI团队的藩篱,能够为整个企业提供商业价值。
2014年,用于市场营销的数据分析和大数据也会成为一个大年,影响着广告、产品推销和消费者的行为。这些方面的一些关键创新时刻估计将会在世界杯和冬季奥运会期间出现。
让各业务部门的分析师从事大数据和数据分析,这将比高薪聘请数据科学家更重要。此举将会压低数据科学技能导致的过高薪水。
IEEE的专业分会认为,2014年,万物互连——可识别的物体无缝集成到信息网络中——将会让位给真正的物联网。而物联网将会充分发挥移动设备和传感器观察并监控其周边环境的能力,增强现实世界中的物体与其Web副本之间的协同性。
物联网将会生成大量与现实世界相关的数据,因而会要求智能化的解决方案在现实世界与相对应的数字世界资源之间赋予连接性、网际互连和相关性。
数据的规模、速度和种类(volume、velocity and variety)在2014年将会继续呈指数级发展,因此更需要一些简单的分析工具来驾驭这些“数据洪流”。
IEEE称,“正是这3个V让大数据成了非常难以制服的老虎。技术世界如今还跟不上培训数据科学家,为各行各业提供易用工具的庞大需求,尚无能力将各行业收集到的数据转换成有意义的洞察力。而目前已经出现的巨量数据时代更要求在数据管理和分析方面采用新的范式和实践。2014年,竞争就将在这一领域中展开。”
基于R编程语言的分析是专为数据科学家用于统计分析的,这种分析功能2014年将成为主流,逐渐让传统的编程环境如SAS和SPSS边缘化。
目前有超过200万用户和300万的分析师们都在寻找更好的解决方案。R语言恰逢其时。
来年我们将会看到各种交互应用——Web应用、移动应用、社交应用等的大爆发,它们均基于Hadoop平台构建,可与人们实时交互,实时SQL-on-Hadoop数据库厂商Splice Machine的联合创始人兼CEO Monte Zweben说。
“2014年将会出现实时的大数据应用平台,”Zweben称。“我们不再只用今天去分析昨天的数据了。你可以分析5分钟之前,甚至1分钟之前的数据了。企业必须得有交互式应用,以便进行实时的决策。”
2014年,Hadoop将会在安全、运营管理、资源管理和多点复制方面发展得更好,从而获得企业更多的信赖,Zweben说。
“企业所需要的各种东西Hadoop逐渐都会有,”他说。“而且这些大数据平台也会变得更加规范和标准化。我认为这将会成为一大要点。”
大数据平台的商用被广泛认可的标志就是,至少会有一家Hadoop或NoSQL提供商在2014年成功上市,为大数据和云环境提供安全解决方案的Gazzang的总裁兼CEO Larry Wamock做出了这样的预测。
2014年,一个新的数据和分析堆栈将会与数据库、分析和虚拟化等新的解决方案一起出现,这将会对传统。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10