京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据和预测分析:数据是否越多越好_数据分析师
Michael Berry对大数据的浮夸之词颇不以为然。身为旅游网站TripAdvisor的分析总监,他认为更多的数据未必带来正面的业务影响,比如大数据和预测分析的例子。
“很多预测分析的应用其实并不需要所有的数据。”Berry在Predictive Analytics World做主题演讲时说到。因此,对于数据科学家来说,重要的不是想着怎样分析所有的数据,而是看通过哪些数据可以得出真正有价值的结果。那么到底该怎么办呢?“对于这个问题,没有直截了当的答案。”Berry说。
但是,通过每次增加一些数据的方式来测试预测模型的有效性,可以最终确定多少数据是足够的。比如,当Berry想知道旅游代理商对某家酒店或特定客户的标准价位时,采用计算平均值的方法:选取两个取均值,然后是三个…最终在1万个时均值稳定下来。如果取2万个,均值肯定会发生变化,但这已经没有必要了。
“这就是关键所在。如果你有足够的数据,那么单纯数量上的增加就不会对结果造成很大的影响。”Berry说。
如果过多的数据不会带来本质的不同,那么什么才是关键所在呢?“很多方面。”Berry表示。数据的纯净度、样本的合理全面以及专注于数据质量和挖掘的人才等,都会导致结果的不同。
这些都是预测分析中的关键点,比如指出哪些变量可以使模型更健壮,或者结合哪些来源的数据可以发现新的模式。
“比如风寒效应(wind chill factor)。”Berry说。结合了实际的温度和风速,才能切实分析出人体对于外界环境的感受。
Berry并非唯一对当前大数据和预测分析境况有微词的人。咨询公司Rexer Analytics的创始人Karl Rexer认为数据科学家们多少都有点迷茫失措。在其2013年对数据挖掘从业者的调查看出,受访者反馈表明数据规模变得越来越大。但是,当被问及有多少数据被用于真正的分析时,答案和2007年的调查结果并无二致。
这并非证明所谓大数据是一场闹剧。“对于传统的预测分析建模或数据挖掘项目来说,总体的样本规模并未出现增长。”Rexer说。
将分析术语转化为业务端所能理解的语言,是一种巨大的挑战。工资、人力和服务外包提供商Paychex是这样打破藩篱的:根据业务端的建议来进行描述。
“当我们构建模型时,会举行一个命名比赛。”Paychex的建模分析师Tom Kern在本次Predictive Analytics World上表示。Kern的团队会向用户发送电子邮件,其中对模型进行了简短的描述,并且提供一些词汇供其使用。用户根据实际工作,创造缩写词汇,比如SAM表示销售预期模型(sales anticipation model),TIM表示领域识别和映射模型(territory identification and mapping model)。
如果业务端用户的建议最终被采用,其就会收到一个礼物卡。由此,就可以根据诸如销售人员之类的用户的期望,从而思考预测模型该做些甚么。
作为全球最大的零售商之一,宝洁公司宣布推出一款新型的低价汰渍洗衣剂,以此来吸引中端客户。该如何评价这个决策呢?
Shel Smith是市场分析公司Twenty-Ten Inc.的创始人,他的看法是:“如果你发布类似的产品,不仅仅是在获取新的客户,其实还在鼓励已有的客户替换现有的高价产品。”
鉴于当前经济形势的影响,这种担忧并非没有道理。但是,Smith对宝洁的策略持有信心。他认为,宝洁的策略是基于预测模型、海量数据和精准营销来达成的,可以在获取新客户的同时不影响现有品牌的销量。
“宝洁肯定有很多我们不知道的过人之处,但是在获取新客户方面并无什么神秘的。”Smith表示。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27