
作者:豌豆花下猫
来源:Python猫
众所周知,升级某个库(假设为 xxx),可以用pip install --upgrade xxx 命令,或者简写成pip install -U xxx 。
如果有多个库,可以依次写在 xxx 后面,以空格间隔。那么,如何简单优雅地批量更新系统中全部已安装的库呢?
接下来我们直奔主题,带大家学习几种方法/骚操作吧!
方法一:pip list 结合 Linux 命令
pip list 命令可以查询已安装的库,结合 Linux 的一些命令(cut、sed、awk、grep……),可以直接在命令行中实现批量升级。
先查询一下,看看是什么格式的:
可以看到,前两行是一些提示信息,我们需要从第 3 行开始过滤,那就可以使用awk命令:
python3 -m pip list | awk 'NR>=3{print}' | awk '{print $1}' | xargs python3 -m pip install -U
解释一下这句命令的操作过程:先 list 查询,接着第一个 awk 取出行号大于等于 3 的内容,第二个 awk 取出第一列的内容,然后作为参数传给最后的升级命令。
(PS:测试服务器上有不同版本的 Python,所以作了指定。关于“-m”的用法,推荐阅读:python 中 -m 的典型用法、原理解析与发展演变)
pip 还支持查询已过期的库,即使用pip list --outdated 命令。默认情况下,查询出的格式跟pip list 相似,有效内容从第三行开始,大家可以试试。
另外,我们还可以指定--format=freeze 格式,效果是这样的:
这样的格式,可以用 cut 命令切割“=”号,然后取第一列:
pip list --outdated --format=freeze | cut -d = -f 1 | xargs pip install -U
以上命令在 Windows 系统中用不了。有没有更为通用的方法呢?
方法二:使用 pip freeze
如果是全量升级已安装的库,可以先用pip freeze 命令生成依赖文件,获取到已安装的库及其当前版本号:
pip freeze > requirements.txt
然后修改文件中的“==”为“>=”,接着执行:
pip install -r requirements.txt --upgrade
此方法比较适合于带有依赖文件的具体项目,可以针对该项目来升级所需的库。
方法三:代码中调用 pip 的方法
早期的 pip 库(<10.0.1)提供了 get_installed_distributions() 方法查询已安装的库,可以在代码中使用:
# 只在早期 pip 版本中用 import pip from subprocess import call packages = [dist.project_name for dist in pip.get_installed_distributions()] call("pip install --upgrade " + ' '.join(packages), shell=True)
在较新版本中,此方法已被废弃,同样的功能要这样写:
# 较新的 pip 版本。但不建议使用 from subprocess import call from pip._internal.utils.misc import get_installed_distributions for dist in get_installed_distributions(): call("pip install --upgrade " + dist.project_name, shell=True)
但是,“_internal”带前缀下划线,表明它并不希望被导出使用。
方法四:使用 pkg_resources 库
跟方法二和三相似的还有一种方法。
pkg_resources 是 setuptools 库的一部分,用于查找和管理 Python 库、版本依赖关系、相关联的资源文件等。可以这样写:
# 需要安装 setuptools import pkg_resources from subprocess import call packages = [dist.project_name for dist in pkg_resources.working_set] call("pip install --upgrade " + ' '.join(packages), shell=True)
方法五:使用 pip-review 库
pip-review 库是一个专门用来方便升级 Python 库的工具,可以查看已过期的库、自动升级或者交互式选择性地升级:
还有一个类似的pip-upgrader 库,也是为了解决批量升级的问题,感兴趣的同学请自行搜索。
pip 官方有计划要提供一个全量升级的(upgrade-all)命令,如果开发出来了,那应该会是最佳选择。
然后,坏消息是这个计划被阻塞了近三年,目前 issue 仍处于 Open 状态,不知道何时能有进展。这里暂且一提吧,未来留意。
前面介绍了六种方法,各有其适用的场景,小伙伴们都学会了么?
除此之外,当然还有其它的方法,比如 stackoverflow 网站上有个“How to upgrade all Python packages with pip?”问题,其下就有比较多的回答。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08CDA 数据分析师:解锁数据价值的专业力量 在当今这个数据爆炸的时代,数据已成为像石油一样珍贵的战略资源。而 CDA 数据分析师, ...
2025-08-08SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07