京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者:丁点helper
来源:丁点帮你
今天将以单向(one-way)方差分析为例,具体梳理方差分析的整个过程。
单向(one-way)方差分析,就是大家很熟悉的单因素方差分析(教科书上叫单向), 一般也称完全随机设计(completely randomized design)的方差分析,是指将研究对象通过完全随机化方法,分配至多个不同的处理组,比较多组的效应指标是否存在差别。
先看如下案例:
为了解大骨节病与粮食中微量元素硒含量之间的关系,某研究团队调查了A(渭源县)、B(青州市)两个大骨节病区和C(泰山区)、D(长清区)两个非大骨节病区。
每个病区随机抽取20户农户并采集面粉,检测面粉中硒元素含量(μg/kg),试分析这4个地区面粉中硒含量是否存在差异。具体的数据情况如下表1。
表1 四地区面粉硒元素含量样本数据表
我们将上述数据绘制成图形(如下图,每个空心小圆圈代表一个样本值),可以很直观地看到,这80个样本值(20*4)各不相同,即它们存在差异。
暂时忽略其他潜在的混杂因素,这种差异的原因可能是由于它们来自不同的地区,但因为四个小组内部的数值也都一一不同,所以,差异也可能仅仅是因为随机误差,通俗地理解就是人们说的运气导致的。
不过,仔细地观察发现两个病区的数据好像明显要低一些,这便提示地区的不同确实有可能造成了目前的差异。
为了验证我们的猜测,就可以采用方差分析来检验:病区与非病区面粉硒含量的差异是否具有统计学意义。
这里需要再明确一点的是,我们的目标是比较这四个地区面粉中硒含量是否有差异,在实际操作中,我们比较的是四个地区硒含量的总体平均数,因此,只要总体平均数有差异,我们就说四地区硒含量有差异。
要进行方差分析,当然,我们首先要进行假设:这四组数据都没有差异,注意是都没有!
在这个假设下,我们可以把这四组数据看做是一个大组,即将上述80个数据视为一个整体。对于这个整体,我们可以计算一个平均数和标准差,即表1中72.22和20.00。
可是实际情况下,这80个数据是分属于四个小组的,因此我们也可以分别计算这四个小组的平均数,即57.11、55.58、85.62、90.55。
如果假设成立(即四组数据都没有差异),那么这四个小组的平均数应该是围绕着整体平均数(即72.22)上下波动的,互相差异应该不是很大。
但现在我们实际获得的数据却显示,小组中最低的均数为57.11、最大的为90.55,直观上看都与72.22的距离不小,所以我们就会怀疑不能把它们看做一个整体(更严谨的表达是,它们不是来自同一个总体),从而拒绝它们相同的假设。
顺着这个思路,我们获得下面这张表格(表2):
表2 方差分析一般结果表
上述表格中涉及的具体的计算过程大家不需要细看,只需大概了解所谓的“离均差平方和(SS)”和“均方(MS)”的计算方法。
然后对照前面我们谈到的方差的概念和计算方法,你是否会发现,不明所以的“均方(MS)”其实可以看做是一种特殊类型的“方差”!
对照下图方差的计算公式:左边是离均差平方和,右边是自由度。
我们首先看衡量“组内变异”的均方(MS组内),在各个小组内部因为没有地区差异,所以MS组内的大小大小仅反映了随机误差(即运气)的情况。
而当假设四组总体均数相同时,组间均方(MS组间)的大小也仅仅反映随机误差的大小。
如何理解这里的谈到的“随机误差”呢?
对于来自同一个总体的两个或多个样本的差异我们可以简单理解为随机误差,也就是说,虽然表面上它们不同,但这种不同并没有意义,也不会反映额外的信息,仅仅是因为运气导致的。
好比你和别人掷色子比大小,虽然你们获得的点数不同,但这种不同完全是因为运气,不能说明任何其他的问题,同时也不会出现一个人总赢、另一个总输的局面。
但是如果对方悄悄在色子上做了点手脚,知道怎样掷可以获得大的点数,这个时候,你们点数的差异就不再仅仅因为运气,还有色子的原因。
用统计学的语言来说,就是你们的差异不仅包含了随机误差,还包含了其他因素。所以,下次如果感觉自己总是在输,就要看看是不是色子出现了问题。
回到本例,既然MS组间和MS组内这两者都仅反映随机误差的大小,那么其携带的信息量就应该没有差异(提示:方差的大小决定了数据的信息量)。
由此,在数值上MS组间与MS组内差异不大,所以使用MS组间除以MS组内时,所获得F值原则上应该在1附近。
如果现在我们获得的数据计算出来的F值比1大很多(对应的P值会很小),则意味着MS组间远大于MS组内,从而表示,MS组间携带了多余的信息,因此,可以证明MS组间的差异不仅仅包含随机误差,还包含其他因素(比如地区不同),结合本例,即意味着四地区间面粉硒含量不都相同!
将上述数据用SPSS运算后获得结果如下表3。很显然,F值超过46,远大于1(注意,在正式情况下F值并非和1比较,这里仅为了方便理解),其对应的P值远小于0.05,由此拒绝零假设,差异有统计学意义,可以认为这四个地区硒含量的总体均数不全相等,也就是说至少有两个地区总体均数不等。
表3 四地区硒含量方差分析结果表
单向方差分析仅告诉我们这四个总体均数不全相等,但具体哪几个不等,哪几个相等呢?这就涉及到两两比较了。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12