
作者:丁点helper
来源: 丁点帮你
重复测量方差分析与我们之前学习的各种方差分析(单变量,对于因变量而言)的区别主要在于“重复”二字。
之前的方差分析是对一个变量的变异进行分解(即所谓的离均差平方和);重复测量的方差分析则是针对多个变量进行的,也可以叫做变异分解,但此时它有了一个新名字,叫方差-协方差矩阵的变异分解。
什么叫协方差?什么又叫矩阵?
简单说说,协方差就是两个变量之间相关关系的度量,学习过相关分析的同学可能熟悉点儿,相关系数就是通过协方差计算出来的。
正是因为出现了多个因变量、所以才会需要研究相关(即协方差),而也因为相关,其就不能使用一般的方差分析,因为破坏了独立性假设。
而对于矩阵,它是高等数学-线性代数中最基本的概念,暂时就把它看做一个一个数的方阵。
出现这么多新的概念,就是因为,现在我们分析的因变量不再是一个,而是多个,所以,重复测量的方差分析,也可以看做是多元方差分析(多个因变量)。
实际上,SPSS也是这样操作的,大家听过的“球形检验”,就是用来判断需不要看多元方差分析的结果,下面我们通过一个案例来具体讲讲。
案例:某研究者通过动物实验来探究海水淹溺后残留于肺内的海水是否会导致肺损伤。将12只杂种犬随机分为两组,每组6只,一组用海水灌注右肺,另一组海水灌注全肺。每只犬分别在海水灌注前、灌注后5min、30min、60min、120min检测氧分压。
(案例来自医咖会-刘桂分《医学统计学》)
具体的数据如下表
这是一个典型的可以使用重复测量方差分析的数据,而且稍显复杂的是,这里进行了分组:灌注右肺(用“1”表示)和灌注全肺(用“2”表示)。
还记得我们之前讲协方差分析的时候强调的内容吗?分析数据前,首先找到X、Y、Z,即自变量、因变量、协变量。
本案例中自变量是分组变量(右肺VS全肺),因变量是氧分压,没有协变量。
不过,我们昨天说过,重复测量的方差分析很重要的一点是检验“时间效应”,即不同的时间点测量的数据是否有差异。
所以,在这里,也可以把时间效应看做一个特殊的自变量,而且它有一个专门的名字,叫within-Subject Factor,一般直译为“受试者内因素”。
SPSS中进行重复测量方差分析的具体操作可以参考链接(来源:医咖会),之后我们也考虑录制专门的视频进行讲解。
做过重复测量的同学可能知道,SPSS会输出很多结果,让人眼花缭乱,所以到底应该怎么看这些结果呢?
下面这张图给我们做了一个梳理,推荐给大家:
由上图可知,对于SPSS给出的一系列结果,大家应该首先找到“球形检验”的结果(Mauchly's Test of Sphericity):
球形检验结果,该例不满足球形假设(P小于0.05)
如果球形检验的P值(sig)大于0.05,称作数据满足球形假设,此时可直接看一元方差分析的结果(Tests of With-in Subjects Effects),而且是看第一行(Sphericity Assumed),根据其P值(sig)判断时间效应(time)、以及时间和分组的交互效应(time*group)。
如果球形检验的P值(sig)小于0.05,则称数据不满足球形假设,此时就需要结合多元方差分析和一元方差分析的矫正结果,一般两个结果会一致,如果不一致则以多元方差分析的结果为准。
结合本案例,因为其球形检验P值小于0.05,不符合假设,所以看多元方差分析或校正后的一元结果,如下图:
多元方差分析结果
一元方差分析结果(校正后)
蓝线代表右肺组;绿线代表全肺组
组间比较的单变量方差分析
可以发现,以上结果都显示差异有统计学意义(P<0.001),意味着:
1) 时间效应(time)具有统计学意义:即灌注海水后,犬肺的氧分压会随着灌注的时间的延长而逐渐下降,到灌注后60min达到最低;
2)交互效应(time*group)具有统计学意义:随着灌注时间的延长,单肺灌注与全肺灌注氧分压下降的幅度不同,从图形上看就是,直线的斜率不同,全肺灌注的犬氧分压下降幅度大(直线更陡峭)
3)单独组间效应(group)具有统计学意义:此处SPSS对多个因变量进行了数据变换,从而进行单变量方差分析,结果显示P<0.05,表明灌注部位会影响氧分压。
由此,对重复测量的方差分析进行一个简单总结:
重复测量方差分析最核心的功能是研究指标是否随着时间的变化而变化(time),拿到SPSS的分析结果,应该首先看“球形检验”,然后根据其结果,选择对应的分析表格。如果除了时间因素之外还有分组效应,则分析逻辑与单变量的单因素或多因素方差分析类似。
以上图片参考来自“医咖会”,如有侵权,请联系删除!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12