
作者:丁点helper
来源:丁点帮你
无论是单因素还是双因素方差分析,我们可以发现,它们都有一些共性,比如研究的因变量(如前文的硒含量、满意度得分),都是定量变量;而自变量,即分组变量(如地区、教育程度、性别)都是定性变量。
现在我们将前文“满意度得分的例子”继续延伸:除了我们关注的“教育程度”和“性别”外,还有其他变量会影响人们对生活的满意度得分吗?
当然有,比如收入水平!
很显然,一个人的工资多少完全可能直接决定他目前对生活的满意度。因此,倘若我们忽视了调查对象的收入情况,仅研究教育程度和性别的影响,这样就可能造成结果产生偏移,也就是说可能本来没意义的结果变成了有意义,从而得出误导性的判断。
因此,在这种情况下,“收入”这个变量就被称为“协变量”,可以记为“Z”。纳入协变量的方差分析,即称协方差分析。
一般而言,进行协方差分析的协变量为“定量变量”,比如本例中的“人均月收入”,它一般不是研究者重点研究的变量(本例中重点研究的是教育程度和性别),但因为它会对分析结果造成干扰,因此在分析过程中必须要将其纳入。
所以,协方差分析仍然是建立在方差分析这个基本框架之上的,其思想与单因素以及双因素方差分析区别也不大,并且在进行分析前数据需要满足的条件也都需要。
此外,因为加入了一个新的变量——协变量,所以也有些额外了条件需要满足。我们今天对这些条件做些概述。
1)变量的类型:一般而言,进行协方差分析,因变量是定量的连续变量(如本例的“满意度得分”);自变量是分类变量(可以加入多个自变量,如本例中的“教育程度”和“性别”);协变量是连续变量(如本例的“收入”)。
2)线性关系:原则上需要协变量与因变量存在线性关系。
3)平行性假设:分组变量的不同水平下,协变量与因变量的回归直线互相平行。
线性假设和平行性假设初次看起来可能比较难理解,但实际上就是为了排除所谓的交互作用。什么是交互作用呢?
比如我们想研究“教育程度”与“满意度得分”的关系,协变量是收入。在不考虑协变量时,发现随着教育程度的升高,人们的满意度得分也逐渐升高,比如教育上升一个等级(从“高中毕业”到“大学本科”,或者从“大学本科”升至“研究生及以上”),满意度得分都会增加5分。
现在加入“收入”这个协变量之后,发现随着教育程度升高,满意度得分也升高,但是不同的学历程度,其升高的幅度不一样。
比如,加入协变量之后,从“高中毕业”升至“大学本科”,满意度得分仍增加5分;但如果从“大学本科”升至“研究生及以上”,满意度得分仅仅增加3分。这个时候,我们就说收入与教育程度产生了交互作用。
产生了交互作用,也就意味着收入对生活满意度的影响会随着教育程度的变化而变化(注意这里的措辞,收入影响的是满意度和教育程度的相关关系,而不仅仅是其中某一个变量,这是理解交互作用的核心)
这句话也可以反过来说。教育程度对生活满意度的影响会随着人们收入不同而不同,用线性回归的术语来表示就是:不同的教育程度下,收入与满意度得分的回归直线斜率(β)不同,因此,它们就不会平行(两直线平行需要斜率相同)。
所以,想满足平行线假设,就需要协变量与自变量之间不存在交互作用,这个可以通过专门的检验方法来判断。
看到这里,你可能会疑惑,明明在讲方差分析,怎么扯到回归的内容了?
是的,方差分析和回归分析实际上可以看做是一回事儿,只是两者侧重点略有不同,前者主要是比较差异,后者主要是算影响的效应值(即回归系数β,这一点我们后面详述)。
一方面对于多因素或协方差分析的SPSS操作,我们称作“一般线性模型”;另外在进行回归分析之后软件也都会首先弹出一个方差分析的大表,检验整个回归模型是否有意义。
只不过我们在进行回归分析时,并没有严格区分自变量和协变量,而是将它们一股脑地全部纳入回归模型,然后筛选出最终有意义的变量。
因此,我们现在讲的方差分析,其实就是后续回归分析的一些特例,从回归的角度理解方差分析,相信你会看的更加明了!
回到我们今天的主题,除了上述三个条件,在进行协方差分析时也需要注意其他条件,比如常说的正态、独立、方差齐等,处理的方法也和普通的方差分析基本相同,暂不赘述。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02