
作者:丁点helper
来源:丁点帮你
今天,我们讲等级变量的假设检验。首先,回顾一下,什么叫等级变量,也称有序变量。
一般而言,等级变量属于分类变量(如上)的一种,与之相对的就是无序变量。大家生活中经常碰到的“满意程度”就是一个等级变量。
当我们比较两组人群,比如男女,对某项服务的满意程度时,就会用到秩和检验。这其中的缘由是什么呢?
我们先把“等级变量”好好研究一番。
假设有8名顾客对某个餐厅的服务用“非常满意”、“满意”、“不满意”和“非常不满意”进行评分,一般来讲,我们会把这些结果分别用“1”到“4”的数字进行编码。
比如,这8名顾客的打分结果为“1、2、2、3、1、4、3、2”。单从数字上看,大部分人应该比较“满意(2)”或“非常满意(1)”。
可是,如何衡量平均的服务满意程度?很显然,可以算个平均数。上述8个数计算出来:平均数是“2.6”。
仔细想想,这里的2.6到底代表什么,是“比较满意”还是“比较不满意”?好像都说得通,但仍然很含糊。
所以,在对等级变量求均数时,难以避免出现小数,而一旦出现小数,就会难以解释。
这时,采用秩和检验,使用秩代替原始数据,通过比较总体分布的形态来进行统计推断,就避免了等级变量不同级别的均值无法解释的困境。
而我们之前所讲的t检验、方差分析等,叫做“依赖参数”进行的统计检验,即参数检验。
比如用总体均数这个参数,通过样本数据构造统计量,最后结论的专业解释或含义,也常常通过样本均数的大小进行阐述。
下面,我们通过一个案例来具体看看如何用SPSS进行相关检验的操作。
某研究团队2007年7月至11月对西藏拉萨市和山南地区大骨节病进行流行病学调查,获得了两个地区受检人群大骨节病不同临床分度的数据,见下表。现比较两个地区的大骨节病临床分度是否具有统计学差异?
上表中的“临床分度”就是一个等级变量,本例想要比较的就是两个地区(拉萨和山南)大骨节病患者的临床分度是否有差异,属于两独立两本的非参数检验。
上表同时给出了秩和检验求秩和的具体步骤,感兴趣的同学可以对照表格每列前面的序号了解一下。
不过我们现在主要采用软件检验,所以也可以不用完全搞明白背后的数学逻辑。
SPSS的操作步骤截图如下:
两独立样本非参数检验
默认选用Mann-Whitney U 检验
检验结果
根据上表检验的P值(Asmp.Sig.)来看,P=0.883>0.05,差异无统计学意义。按α=0.05水准不拒绝H0,尚不能认为拉萨和山南地区的大骨节病临床分度的差异有统计学意义。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01