京公网安备 11010802034615号
经营许可证编号:京B2-20210330
导读:描述“富者愈富,穷者愈穷”的马太效应,以及经济学中的帕累托法则,其背后的数学模型是什么?在统计学中,它们可以被抽象成幂律分布。
作者:帕诺斯·卢里达斯(Panos Louridas)
来源:大数据DT(ID:hzdashuju)
内容摘编自《真实世界的算法:初学者指南》
我们在城市规模中看到的模式:大多数人类居住地区的规模达不到以百万来计数,但少数地区能达到数百万人规模。在数字王国里,大多数网站的访问量很低,但少数网站的访问量非常庞大。在文学领域,大多数书籍几乎无人阅读,但少数书籍畅销异常。
所有这些都让我们回忆起“富者愈富,穷者愈穷”的现象。
在语言学中,这种现象被称为Zipf定律,以哈佛的语言学家George Kingsley Zipf的名字命名,他观察到在一种语言中第i位最常见的单词出现的频率正比于1/i。Zipf定律指出,在一个n个单词的语料库中,遇到第i位最常见单词的概率为
其中
数Hn在数学领域出现非常频繁,值得为它起一个名字——第n位调和数(harmonic number)。这个名字源自何处?它源于音乐中的泛音或称和声。一根弦以一个基波长震动,同时还以1/2,1/3,1/4,…的谐波长震动:这对应一个无穷和,当n=∞时,它被称为调和级数(harmonic series)。
由于Zipf定律给出了一个事件的概率,因此也用它命名了对应的概率分布。
在表11-1中,你可以看到一个英语语料库(布朗语料库,包含981716个单词,其中有40234个不同单词)中最常见的20个单词,其经验概率是通过统计它们在语料库中出现的次数来计算的,而它们的理论概率则是根据Zipf定律/分布计算的。简言之,我们给出了排名、单词、经验分布和理论分布。
在图11-4中,我们绘制了表11-1中的数据。注意,分布只是为整数值定义的。我们增加了一条差值线来显示总体趋势。另外注意,理论概率和经验概率并不是完全重叠。这是我们将一个数学模型应用到现实世界时必须要面对的情况。
▲图11-4 布朗语料库中最常见的20个单词的Zipf分布
当我们发现一个快速下降的趋势时,如图11-4中的趋势,就有必要检查一下,如果我们将熟悉的x和y坐标轴替换为对数坐标轴会发生什么。在对数坐标轴中,我们将所有值转换为它们的对数后绘制出来,图11-5给出了与图11-4等价的对数坐标图:对每个y我们使用log y,对每个x,我们使用log x。
▲图11-5 对数坐标轴下布朗语料库中最常见的20个单词的Zipf分布
如你所见,理论分布的趋势现在变为一条直线,经验分布看起来位于理论预测值上方一点。在大多数情况下,理论分布与我们实际观测的结果会有一些不同,而且,两个图只显示了包含前20个最常见单词的子集,因此,基于它们我们不能真正判断是否吻合。
为了观察真正发生了什么,请查看显示了布朗语料库中所有40234个不同单词的完整分布的图11-6和图11-7。有两个现象凸显出来:首先,除非我们使用对数刻度,否则图是无用的,这很好地说明了分布有多么不均匀,我们必须使用对数值,否则任何趋势都不可见;第二,一旦我们使用了对数坐标轴,理论值和经验观察结果的吻合要好得多。
▲图11-6 布朗语料库的经验分布和Zipf分布
▲图11-7 对数坐标轴下布朗语料库的经验分布和Zipf分布
在对数刻度下,我们能看清所有东西,因为Zipf定律是幂率(power law)的一个特例。幂率是指一个值出现的概率正比于此值的负指数,用数学语言描述就是:
P(X=x) ∝ cx-k,其中 c > 0,k > 0
在此公式中,符号∝表示“正比于”。现在我们可以解释为什么对数图是一条直线了。如果有y=cx-k,我们可得y=log(cx-k)=log c-klog x。最后一部分就是一条直线y,截距等于log c,斜率等于-k。因此当我们遇到在对数图里成一条直线的数据时,就是其理论分布可能是幂率的明显信号。
经济学中幂率的一个例子是帕累托法则,它指出80%的结果源自20%的起因。在管理学和流行的大众理解中,其含义通常变为20%的人做了80%的工作。在帕累托法则中可以证明P(X=x)=c/x1-θ,其中θ=log 0.80/log 0.20。
幂率是如此普遍,以至于在过去二十年间产生了一个研究相关现象的完整领域似乎任何事情都有幂率现象隐藏在背后。
除了在介绍马太效应时已经提到的例子外,我们还发现幂率出现在如科技论文的引用、地震震级和月球陨石坑的直径等如此不同的领域中,还有生物物种随时间推移而增多、分形学、食肉动物的觅食模式以及太阳耀斑的射线峰值强度,其中也都有幂率现象存在。
这个列表还能继续增加:一天中长途电话的数量、停电影响的人群数量、姓氏出现的频率等。
这种规律有时似乎是凭空冒出来的。例如,一个相关的定律是Benford定律(Benford's law),因物理学家Frank Benford的名字而命名,也被称为第一位法则(First-Digit law)。它指出了在很多种类的数据中数字频率的分布。
具体地,它指出,一个数的第一位数字是1的概率是30%,从2到9每个数字出现在第一位的频率逐渐降低。用数学语言表达,这个定律指出,一个数的首位数字是d=1,2,…,9的概率是
如果我们计算每个数字的概率,就会得到表11-2中的结果。表中的数值告诉我们,如果数据库中有一组数,其首位数字为1的概率约为30%,大约有17%的数会以2开头,大约有12%的数会以3开头,依此类推。
图11-8中给出了Benford定律的一个图示。看起来和齐普夫分布没有太大不同,因此我们可能想知道如果用对数坐标轴绘制的话图会变成什么样子。图11-9给出了结果,几乎就是一条直线,意味着Benford定律与幂率相关。
▲图11-8 Benford定律
▲图11-9 对数坐标轴下的Benford定律
Benford定律的广度令人震惊。它适用于如物理常量、世界上最高建筑物的高度、人口数、股票价格、街道地址等如此不同的数据集,还有很多。
实际上,它看起来如此普遍,以至于一种检测伪造数据的方法就是检查包含的数值是否不服从Benford定律。欺诈者会修改真实值或用随机值替代真实值,他们不会注意得到的数值是否服从Benford定律。因此如果我们遇到一个看起来可疑的数据集,最好先检查首位数字是否服从Benford概率。
如果我们的搜索模式反映了数据分布模式,即如果记录的关键字服从Benford定律,且我们正在搜索的关键字也服从Benford定律的话,Benford定律可能影响我们的搜索。如果是这种情况,会有更多的记录具有以1开头的关键字,对这些关键字的搜索也会更多,以2开头的关键字少一些,依此类推。
关于作者:帕诺斯·卢里达斯(Panos Louridas),曼彻斯特大学软件工程博士,现为雅典经济与商业大学管理科学与技术系副教授。在加入高校之前,曾在投资银行担任高级软件工程师。
本文摘编自《真实世界的算法:初学者指南》,经出版方授权发布。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06在数据驱动的建模与分析场景中,“数据决定上限,特征决定下限”已成为行业共识。原始数据经过采集、清洗后,往往难以直接支撑模 ...
2026-01-06在Python文件操作场景中,批量处理文件、遍历目录树是高频需求——无论是统计某文件夹下的文件数量、筛选特定类型文件,还是批量 ...
2026-01-05在神经网络模型训练过程中,开发者最担心的问题之一,莫过于“训练误差突然增大”——前几轮还平稳下降的损失值(Loss),突然在 ...
2026-01-05在数据驱动的业务场景中,“垃圾数据进,垃圾结果出”是永恒的警示。企业收集的数据往往存在缺失、异常、重复、格式混乱等问题, ...
2026-01-05在数字化时代,用户行为数据已成为企业的核心资产之一。从用户打开APP的首次点击,到浏览页面的停留时长,再到最终的购买决策、 ...
2026-01-04在数据分析领域,数据稳定性是衡量数据质量的核心维度之一,直接决定了分析结果的可靠性与决策价值。稳定的数据能反映事物的固有 ...
2026-01-04