
文章来源: 丁点帮你
作者:丁点helper
两组独立样本的非参数检验与其t检验相对,主要是用于不满足正态分布的小样本,一般用Wilcoxon秩和检验,又称Mann-Whitney 检验。
这里我们想指出一点的是,人们往往对正态性的关注更多一些,其实样本量也很重要,这里是样本量较小的情形,如果样本量足够大(比如超过40),即使正态性不满足,也可以使用t检验,而且更推荐用t检验。
案例:在某小学随机采集12岁男童和女童各10名的头发样品,检测发样中钙(Ca)含量(μg/g),数据见下表。男童与女童头发中Ca含量有无差异?
上述数据经过正态性检验,P<0.05,此时认为数据不符合正态分布,即男童组与女童组的数据均不服从正态分布;又因为样本量合计仅有20,所以可采用非参数秩和检验。
下面,我们简单说说这其中的基本思想:
和之前讲解的单样本及配对样本秩和检验一致,这里都需要先编制求秩和,然后用秩和进行检验统计量的计算。
比如,随机抽取样本量分别为n1和n2的两个独立样本,要先将全部数据统一编秩,注意是两组混合起来统一编制。
如上表,就是将男童与女童混合在一起进行编制,然后分组计算秩和。
这里,相当于对原始数据进行了秩变换,即用秩数据代替原始数据进行分析,从而不受原始数据需满足正态分布的条件限制。
如果上述女童组的Ca含量原始数据高于男童组,则女童组Ca含量的秩和也大概率会高于男童组。
我们说过,编秩就是数数,这里一共有20个样本,总秩和加起来为210(就是从1加到20:用中学的公式,首位相加乘以项数除以2)。
如果满足假设,两组儿童Ca含量没有差异,那么两组的秩和大概率都等于105(210的一半)。
以上是基本的思路,严格来讲,检验是在计算秩和后,取任意一组样本(如男童)的秩和(R1=77)作为Wilcoxon秩和检验统计量W,在H0假设成立情况下,则W的均数和标准差分别等于:
当W远离其均数时,则有理由拒绝零假设,认为两组有差异。
比如本例W=77(男童的秩和),比 小约2倍标准差:(77-105)/13.229=-2.116,所以,粗略判断,两组数据应该是有差异的。
这里关于W统计量均数和标准差的计算可以不用特别关注,主要是理解整个思想过程,具体的计算都会交由软件来做。
上述案例标准的检验的步骤总结如下:
(1) 建立检验假设,确定检验水准
H0:男童与女童头发中Ca含量的总体分布相同
H1:男童与女童头发中Ca含量的总体分布不同
a=0.05
(2) 编秩、求秩和
先将男童组与女童组发样中Ca含量的数值由小到大统一编秩,将两组秩分别相加得每组秩和。
(3) 计算检验统计量
本例W=77,Z=-2.116。
(4) 确定P值,作出推断
本例P=0.034,按α=0.05 水准拒绝H0 ,接受H1 ,可以认为男童与女童的头发中Ca含量差异有统计学意义。男童组平均秩为77/10=7.7,女童组平均秩为133/10=13.3,可认为女童的头发中Ca含量高于男童。
另外,值得指出的是,在实际应用中,有一些数据是用离散尺度表达的,什么意思?
比如对于疼痛的评分,研究者会将疼痛用0至10个数据表示,0表示无痛、10表示最痛,研究对象需要根据自身的疼痛程度在这11个数字中挑选一个数字代表疼痛程度。
当用此类数据进行秩和检验,常常会出现很多相同秩,这个时候,检验统计量的计算会略有差别,这个大家稍微留意,不过一般统计软件在分析时会自动调整。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-06-052025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27