
seaborn是一款基于matplotlib的图形可视化python库,它提供了一种高度交互式界面,便于用户能够做出各种有吸引力的统计图表。seaborn主要是针对统计绘图的,一般来说,seaborn能满足数据分析90%的绘图需求,它最大的特点是简单。小编今天给大家分享的就是关于如何使用seaborn绘图的内容,希望对大家有所帮助。
一、常用参数
二、seaborn-数据集分布可视化
1.单变量分布
# 正态分布的500个数据 x1 = np.random.normal(size=500) # 分布图,默认是直方+线型 sns.distplot(x1);
# 均匀分布的500个整数数据 x2 = np.random.randint(0, 100, 500) # 分布图,默认是直方+线型 sns.distplot(x2);
# 分布图,bin是直方的个数,kde是线型(false表示去掉线型),rug显示每个数据的分布(下面深蓝色的部分) sns.distplot(x1, bins=20, kde=False, rug=True)
# 核密度估计,hist表示直方(false表示不要直方)sns.distplot(x2, hist=False, rug=True)
# 核密度函数也可以表示成如下,shade表示阴影 sns.kdeplot(x2, shade=True) sns.rugplot(x2)
# 拟合参数分布 sns.distplot(x1, kde=False, fit=stats.gamma)
2.双变量分布
# 双变量分布 df_obj1 = pd.DataFrame({"x": np.random.randn(500), "y": np.random.randn(500)}) df_obj2 = pd.DataFrame({"x": np.random.randn(500), "y": np.random.randint(0, 100, 500)}) # print df_obj1 # print df_obj2
# 散布图 sns.jointplot(x="x", y="y", data=df_obj2)
# 二维直方图 sns.jointplot(x="x", y="y", data=df_obj2, kind="hex");
# 核密度估计 sns.jointplot(x="x", y="y", data=df_obj1, kind="kde");
3.数据集中变量间关系可视化
# 数据集中变量间关系可视化 dataset = sns.load_dataset("tips") #dataset = sns.load_dataset("iris") sns.pairplot(dataset);
以上就是小编今天跟大家分享的关于seaborn绘图的一些内容,希望对于大家seaborn的学习和使用有所帮助。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-06-052025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27