
小编今天给大家分享的文章又是关于OpenCV的。OpenCV是目前最有名的一款计算机视觉软件库了,将OpenCV吃透对于我们计算机视觉以及机器学习甚至是AI人工智能方面都有很大帮助。下面,就跟小编一起来看如何使用OpenCV实现图像增强吧。
以下文章来源: 小白学视觉
作者:努比
本期将介绍如何通过图像处理从低分辨率/模糊/低对比度的图像中提取有用信息。
下面让我们一起来探究这个过程:
首先我们获取了一个LPG气瓶图像,该图像取自在传送带上运行的仓库。我们的目标是找出LPG气瓶的批号,以便更新已检测的LPG气瓶数量。
步骤1:导入必要的库
import cv2 import numpy as np import matplotlib.pyplot as plt
步骤2:加载图像并显示示例图像。
img= cv2.imread('cylinder1.png') img1=cv2.imread('cylinder.png') images=np.concatenate(img(img,img1),axis=1) cv2.imshow("Images",images) cv2.waitKey(0) cv2.destroyAllWindows()
LPG气瓶图片(a)批次-D26(b)批次C27
该图像的对比度非常差。我们几乎看不到批号。这是在灯光条件不足的仓库中的常见问题。接下来我们将讨论对比度受限的自适应直方图均衡化,并尝试对数据集使用不同的算法进行实验。
步骤3:将图像转换为灰度图像
gray_img=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) gray_img1=cv2.cvtColor(img1,cv2.COLOR_BGR2GRAY)
步骤4:找到灰度图像的直方图后,寻找强度的分布。
hist=cv2.calcHist(gray_img,[0],None,[256],[0,256])hist1=cv2.calcHist(gray_img1,[0],None,[256],[0,256])plt.subplot(121)plt.title("Image1")plt.xlabel('bins')plt.ylabel("No of pixels")plt.plot(hist)plt.subplot(122)plt.title("Image2")plt.xlabel('bins')plt.ylabel("No of pixels")plt.plot(hist1)plt.show()
步骤5:现在,使用cv2.equalizeHist()函数来均衡给定灰度图像的对比度。cv2.equalizeHist()函数可标准化亮度并增加对比度。
gray_img_eqhist=cv2.equalizeHist(gray_img)gray_img1_eqhist=cv2.equalizeHist(gray_img1)hist=cv2.calcHist(gray_img_eqhist,[0],None,[256],[0,256])hist1=cv2.calcHist(gray_img1_eqhist,[0],None,[256],[0,256])plt.subplot(121)plt.plot(hist)plt.subplot(122)plt.plot(hist1)plt.show()
步骤6:显示灰度直方图均衡图像
eqhist_images=np.concatenate((gray_img_eqhist,gray_img1_eqhist),axis=1) cv2.imshow("Images",eqhist_images) cv2.waitKey(0) cv2.destroyAllWindows()
灰度直方图均衡
让我们进一步深入了解CLAHE
步骤7:
对比度有限的自适应直方图均衡
该算法可以用于改善图像的对比度。该算法通过创建图像的多个直方图来工作,并使用所有这些直方图重新分配图像的亮度。CLAHE可以应用于灰度图像和彩色图像。有2个参数需要调整。
1. 限幅设置了对比度限制的阈值。默认值为40
2. tileGridsize设置行和列中标题的数量。在应用CLAHE时,为了执行计算,图像被分为称为图块(8 * 8)的小块。
clahe=cv2.createCLAHE(clipLimit=40) gray_img_clahe=clahe.apply(gray_img_eqhist) gray_img1_clahe=clahe.apply(gray_img1_eqhist) images=np.concatenate((gray_img_clahe,gray_img1_clahe),axis=1) cv2.imshow("Images",images) cv2.waitKey(0) cv2.destroyAllWindows()
步骤8:
门槛技术
阈值处理是一种将图像划分为前景和背景的简单但有效的方法。如果像素强度小于某个预定义常数(阈值),则最简单的阈值化方法将源图像中的每个像素替换为黑色像素;如果像素强度大于阈值,则使用白色像素替换源像素。阈值的不同类型是:
cv2.THRESH_BINARY
cv2.THRESH_BINARY_INV
cv2.THRESH_TRUNC
cv2.THRESH_TOZERO
cv2.THRESH_TOZERO_INV
cv2.THRESH_OTSU
cv2.THRESH_TRIANGLE
尝试更改阈值和max_val以获得不同的结果。
th=80 max_val=255 ret, o1 = cv2.threshold(gray_img_clahe, th, max_val, cv2.THRESH_BINARY) cv2.putText(o1,"Thresh_Binary",(40,100),cv2.FONT_HERSHEY_SIMPLEX,2,(255,255,255),3,cv2.LINE_AA) ret, o2 = cv2.threshold(gray_img_clahe, th, max_val, cv2.THRESH_BINARY_INV) cv2.putText(o2,"Thresh_Binary_inv",(40,100),cv2.FONT_HERSHEY_SIMPLEX,2,(255,255,255),3,cv2.LINE_AA) ret, o3 = cv2.threshold(gray_img_clahe, th, max_val, cv2.THRESH_TOZERO) cv2.putText(o3,"Thresh_Tozero",(40,100),cv2.FONT_HERSHEY_SIMPLEX,2,(255,255,255),3,cv2.LINE_AA) ret, o4 = cv2.threshold(gray_img_clahe, th, max_val, cv2.THRESH_TOZERO_INV) cv2.putText(o4,"Thresh_Tozero_inv",(40,100),cv2.FONT_HERSHEY_SIMPLEX,2,(255,255,255),3,cv2.LINE_AA) ret, o5 = cv2.threshold(gray_img_clahe, th, max_val, cv2.THRESH_TRUNC) cv2.putText(o5,"Thresh_trunc",(40,100),cv2.FONT_HERSHEY_SIMPLEX,2,(255,255,255),3,cv2.LINE_AA) ret ,o6= cv2.threshold(gray_img_clahe, th, max_val, cv2.THRESH_OTSU) cv2.putText(o6,"Thresh_OSTU",(40,100),cv2.FONT_HERSHEY_SIMPLEX,2,(255,255,255),3,cv2.LINE_AA) final=np.concatenate((o1,o2,o3),axis=1) final1=np.concatenate((o4,o5,o6),axis=1) cv2.imwrite("Image1.jpg",final) cv2.imwrite("Image2.jpg",final1)
Thresh_Binary_inv,Thresh_Binary_inv,Thresh_Tozero
Thresh_Tozero_inv,Thresh_trunc,Thresh_OSTU
步骤9:自适应阈值
在上一节中,我们使用了全局阈值来应用cv2.threshold()。如我们所见,由于图像不同区域的照明条件不同,因此获得的结果不是很好。在这些情况下,您可以尝试自适应阈值化。在OpenCV中,自适应阈值处理由cv2.adapativeThreshold()函数执行
此功能将自适应阈值应用于src阵列(8位单通道图像)。maxValue参数设置dst图像中满足条件的像素的值。adaptiveMethod参数设置要使用的自适应阈值算法。
cv2.ADAPTIVE_THRESH_MEAN_C:将T(x,y)阈值计算为(x,y)的blockSize x blockSize邻域的平均值减去C参数。
cv2.ADAPTIVE_THRESH_GAUSSIAN_C:将T(x,y)阈值计算为(x,y)的blockSize x blockSize邻域的加权总和减去C参数。
blockSize参数设置用于计算像素阈值的邻域的大小,它可以取值3、5、7等。
C参数只是从均值或加权均值中减去的常数(取决于adaptiveMethod参数设置的自适应方法)。通常,此值为正,但可以为零或负。
gray_image = cv2.imread('cylinder1.png',0) gray_image1 = cv2.imread('cylinder.png',0) thresh1 = cv2.adaptiveThreshold(gray_image, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 11, 2) thresh2 = cv2.adaptiveThreshold(gray_image, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 31, 3) thresh3 = cv2.adaptiveThreshold(gray_image, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 13, 5) thresh4 = cv2.adaptiveThreshold(gray_image, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 31, 4) thresh11 = cv2.adaptiveThreshold(gray_image1, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 11, 2) thresh21 = cv2.adaptiveThreshold(gray_image1, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 31, 5) thresh31 = cv2.adaptiveThreshold(gray_image1, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 21,5 ) thresh41 = cv2.adaptiveThreshold(gray_image1, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 31, 5) final=np.concatenate((thresh1,thresh2,thresh3,thresh4),axis=1) final1=np.concatenate((thresh11,thresh21,thresh31,thresh41),axis=1) cv2.imwrite('rect.jpg',final) cv2.imwrite('rect1.jpg',final1)
自适应阈值
自适应阈值
步骤10:OTSU二值化
Otsu的二值化算法,在处理双峰图像时是一种很好的方法。双峰图像可以通过其包含两个峰的直方图来表征。Otsu的算法通过最大化两类像素之间的方差来自动计算将两个峰分开的最佳阈值。等效地,最佳阈值使组内差异最小化。Otsu的二值化算法是一种统计方法,因为它依赖于从直方图得出的统计信息(例如,均值,方差或熵)
gray_image = cv2.imread('cylinder1.png',0) gray_image1 = cv2.imread('cylinder.png',0) ret,thresh1 = cv2.threshold(gray_image,0, 255, cv2.THRESH_BINARY+cv2.THRESH_OTSU) ret,thresh2 = cv2.threshold(gray_image1,0, 255, cv2.THRESH_BINARY+cv2.THRESH_OTSU) cv2.imwrite('rect.jpeg',np.concatenate((thresh1,thresh2),axis=1))
OTSU二值化
现在,我们已经从低对比度的图像中清楚地识别出批号。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15