
损失函数,loss function的定义为:将随机事件或其有关随机变量的取值映射为非负实数以表示该随机事件的“风险”或“损失”的函数。在机器学习中,损失函数经常被当作学习准则与优化问题相联系,也就是通过最小化损失函数求解和评估模型。合页损失函数就是常见的损失函数之一,今天小编就给大家分享什么是合页损失函数。
一、合页损失函数简介
目标函数第一项为经验损失或经验风险,
就是合页损失函数hinge loss function,其中下标“+”表示以下取正值。
我们将括号中的部分用z代替:
这也就代表着,如果样本点:能够被正确分类,并且函数间隔(也就是确信度):
大于1时,那么损失就是0.否则损失就是:
目标函数的第二项是系数为λ的w的L2范数,也就是是正则化项。
二、合页损失函数图像
根据上图可以看书,合页损失函数的形状就像一个合页,这也是合页损失函数名字的由来。
其中横轴表示的是函数间隔,下面我们来具体解释一下函数间隔:
1.正负
样本在被正确分类的情况下,y(wx+b)>0;
样本在被错误分类的情况下,y(wx+b)<0y。
2.大小
y(wx+b)的绝对值代表着样本距离决策边界的远近程度。y(wx+b)的绝对值越大,那也就代表着样本距离决策边界越远。
由此,我们能够得出:
如果y(wx+b)>0.那么y(wx+b)的绝对值越大,就代表着决策边界对样本的区分度越好
如果y(wx+b)<0时,那么y(wx+b)的绝对值越大,就表示决策边界对样本的区分度越差
从上图中我们可以看出,
1)0-1损失
在样本被正确分类的情况下,损失为0;在样本被错误分类的情况下,损失为1.
如果样本被正确分类,那么损失为0;如果样本被错误分类,那么损失就为-y(wx+b)。
3)合页损失函数
在样本被正确分类同时函数间隔大于1时,合页损失才会是0.否则损失就是1-y(wx+b)。
合页损失函数又被称为max-margin objective,它最主要的应用就是作为SVM的目标函数。
在SVM支持向量机中,构造目标函数时,我们通常会选择合页损失函数作为损失函数。这也就意味着,合页损失函数不仅需要分类正确,并且确信度足够高时损失才是0.换句话说,合页损失函数对学习有更高的要求。
线性支持向量机原始最优化问题
等价于最优化问题
令
第二个约束条件成立
第一个约束条件成立。
两个约束条件都成立,那么最优化问题
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29