
文章来源: 早起Python微信公众号
作者:陈熹
在我们写爬虫的过程中,目标网站常见的干扰手段就是设置验证码等,本就将基于Selenium实战讲解如何处理弹窗和验证码,爬取的目标网站为某仪器预约平台
可以看到登录所需的验证码构成比较简单,是彩色的标准数字配合简单的背景干扰
因此这里的验证码识别不需要借助人工智能的手段,可直接利用二值法对图片处理后交给谷歌的识别引擎tesseract-OCR即可获得图中的数字。
注:selenium 和 tesseract 的配置读者可自行搜索,本文不做介绍)
首先导入所需模块
import re # 图片处理 from PIL import Image # 文字识别 import pytesseract # 浏览器自动化 from selenium import webdriver import time
先尝试打开示例网站
url = 'http://lims.gzzoc.com/client' driver = webdriver.Chrome() driver.get(url) time.sleep(30)
有趣的地方出现了,网站显示了一个我们前面没有看到的弹窗,简单说一下弹窗的知识点,初学者可以将弹出框简单分为alert和非alert
alert式弹出框
alert(message)方法用于显示带有一条指定消息和一个 OK 按钮的警告框
confirm(message)方法用于显示一个带有指定消息和 OK 及取消按钮的对话框
prompt(text,defaultText)方法用于显示可提示用户进行输入的对话框
看一下这个弹出框的js是怎么写的:
看起来似乎是alert式弹出框,那么直接用driver.switch_to.alert吗?先不急
非传统alert式弹出框的处理
弹出框位于div层,跟平常定位方法一样
弹出框是嵌套的iframe层,需要切换iframe
弹出框位于嵌套的handle,需要切换窗口
所以我们对这个弹出框进行元素审查
所以问题实际上很简单,直接定位按钮并点击即可
url = 'http://lims.gzzoc.com/client' driver = webdriver.Chrome() driver.get(url) time.sleep(1) driver.maximize_window() # 最大化窗口 driver.find_element_by_xpath("//div[@class='jconfirm-buttons']/button").click()
二值法处理验证码的简单思路如下:
切割截取验证码所在的图片
转为灰度后二值法将有效信息转为黑,背景和干扰转为白色
处理后的图片交给文字识别引擎
输入返回的结果并提交
切割截取验证码的图片进一步思考解决策略:首先获取网页上图片的css属性,根据size和location算出图片的坐标;然后截屏;最后用这个坐标进一步去处理截屏即可(由于验证码js的特殊性,不能简单获取img的href后下载图片后读取识别,会导致前后不匹配)
img = driver.find_element_by_xpath('//img[@id="valiCode"]') time.sleep(1) location = img.location size = img.size # left = location['x'] # top = location['y'] # right = left + size['width'] # bottom = top + size['height'] left = 2 * location['x'] top = 2 * location['y'] right = left + 2 * size['width'] - 10 bottom = top + 2 * size['height'] - 10 driver.save_screenshot('valicode.png') page_snap_obj = Image.open('valicode.png') image_obj = page_snap_obj.crop((left, top, right, bottom)) image_obj.show()
正常情况下直接使用注释的四行代码即可,但不同的电脑不同的浏览器,缩放倍率存在差异,因此如果截取出的图存在偏差这需要考虑乘上倍率系数。最后可以再加减数值进行微调
可以看到图片这成功截取出来了!
这个阈值需要具体用Photoshop或者其他工具尝试,即找到一个像素阈值能够将灰度图片中真实数据和背景干扰分开,本例经测试阈值为205
img = image_obj.convert("L") # 转灰度图 pixdata = img.load() w, h = img.size threshold = 205 # 遍历所有像素,大于阈值的为黑色 for y in range(h): for x in range(w): if pixdata[x, y] < threshold: pixdata[x, y] = 0 else: pixdata[x, y] = 255
根据像素二值结果重新生成图片
data = img.getdata() w, h = img.size black_point = 0 for x in range(1, w - 1): for y in range(1, h - 1): mid_pixel = data[w * y + x] if mid_pixel < 50: top_pixel = data[w * (y - 1) + x] left_pixel = data[w * y + (x - 1)] down_pixel = data[w * (y + 1) + x] right_pixel = data[w * y + (x + 1)] if top_pixel < 10: black_point += 1 if left_pixel < 10: black_point += 1 if down_pixel < 10: black_point += 1 if right_pixel < 10: black_point += 1 if black_point < 1: img.putpixel((x, y), 255) black_point = 0 img.show()
图像处理前后对比如下
将处理后的图片就给谷歌的文字识别引擎就能完成识别
result = pytesseract.image_to_string(img) # 可能存在异常符号,用正则提取其中的数字 regex = '\d+' result = ''.join(re.findall(regex, result)) print(result)
识别结果如下
在处理完验证码之后,现在我们就可以向网站提交账号密码、验证码等登陆所需信息
driver.find_element_by_name('code').send_keys(result) driver.find_element_by_name('userName').send_keys('xxx') driver.find_element_by_name('password').send_keys('xxx') # 最后点击确定 driver.find_element_by_xpath("//div[@class='form-group login-input'][3]").click()
需要注意的是,二值法识别验证码成功率不是100%,因此需要考虑到验证码识别错误,需要单击图片更换验证码重新识别,可以将上述代码拆解成多个函数后,用如下循环框架试错
while True: try: ... break except: driver.find_element_by_id('valiCode').click()
为了方便理解,代码的书写没有以函数形式呈现,欢迎读者自行尝试修改!
成功登录后就可以获得个人的cookies,接下来可以继续用selenium进行浏览器自动化或者把cookies传给requests,后面就能爬取需要的信息做分析或者实现一些自动化功能,但由于涉及到的爬虫知识点比较多,我们会在后续的爬虫专题文章中进行分享!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
本次活动市场价2000元,现面向会员免费开放,会员朋友更可以邀请一位非会员免费参加。 【活动目标】 本课程 ...
2025-07-28CDA 数据分析师必备技能全解析 在数据驱动决策的时代,CDA 数据分析师作为连接数据与业务价值的桥梁,需要具备多元化的技能体系 ...
2025-07-28PowerBI 添加索引列全攻略 在使用 PowerBI 进行数据处理与分析时,添加索引列是一项极为实用的操作技巧。索引列能为数据表中的每 ...
2025-07-28t 检验与 Wilcoxon 检验:数据差异分析的两大核心方法 在数据分析的广阔领域中,判断两组或多组数据之间是否存在显著差异是一项 ...
2025-07-28PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-252025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-25从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-25用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21