
大家在工作和生活中经常会遇到处理EXCEL表格的时候,例如将一个EXCEL表格中的内容处理之后复制到另外一个EXCEL表格之中,或者大批量处理EXCEL,无论是哪种情况,如果我们不借助工具,自己一条条去处理的话,估计要耗费不少的时间和经历。今天小编就教大家如何用python处理EXCEL,希望能帮助大家提高效率。
今天处理EXCEL需要用到python的第三方库:openpyxl。
pip install openpyxl安装。
下面来看一下具体步骤:
一、获取EXCEL
1、读取Excel文件
首先导入相关函数
from openpyxl import load_workbook
# 默认可以读写,如果有需要可以指定
write_only和read_only为True
wb = load_workbook('pythontab.xlsx')
默认打开的文件为可读写,若有需要可以指定参数read_only为True。
2、获取工作表--Sheet
# 获得所有sheet的名称
print(wb.get_sheet_names())
# 根据sheet名称获取sheet
a_sheet = wb.get_sheet_by_name('Sheet1')
# 获取sheet名称
print(a_sheet.title)
# 获得当前正在显示的sheet, 也可以用
wb.get_active_sheet()
sheet = wb.active
3、获取单元格
# 获取某个单元格的值,观察EXCEL发现也是先字母再数字的顺序,也就是先列再行
b4 = sheet['B4']
# 分别返回
print(f'({b4.column}, {b4.row}) is {b4.value}') # 返回的数字就是int型
# 除了用下标的方式获取之外,还能使用cell函数, 换成数字,这个表示B2
b4_too = sheet.cell(row=4. column=2)
print(b4_too.value)
4、获取行和列
sheet.rows是生成器, 里面为每一行的数据,每一行又被一个tuple包裹。
sheet.columns类似,但是里面的每个tuple是每一列的数据。
# 由于按行,因此返回顺序为A1. B1. C1
for row in sheet.rows:
for cell in row:
print(cell.value)
# A1. A2. A3这样的顺序
for column in sheet.columns:
for cell in column:
print(cell.value)
通过上述四步的代码我们就能获取所有单元格的数据。
二、将数据写入Excel
1.工作表
首先导入WorkBook
from openpyxl import Workbook
wb = Workbook()
这样,一个新的工作表就建好了,但是还没被保存。
如果需要指定只写模式,我们可以指定参数write_only=True。通常情况下,默认的可写可读模式就行了。
print(wb.get_sheet_names()) # 提供一个默认名称为Sheet的工作表,如果是office2016新建提供默认名称为Sheet1的工作表
# 直接进行赋值就能够更改工作表的名称
sheet.title = 'Sheet1'
# 新建一个工作表,我们可以指定索引,对其在工作簿中的位置进行合理安排
wb.create_sheet('Data', index=1) # 被安排到第二个工作表,index=0代表第一个位置
# 删除某个工作表
wb.remove(sheet)
del wb[sheet]
2.写入单元格
还能使用公式
# 直接给单元格赋值即可
sheet['A1'] = 'good'
# B9处写入平均值
sheet['B9'] = '=AVERAGE(B2:B8)'
注意:若是读取的时候,则需要加上data_only=True,这样读到B9返回的就是数字,假如不加这个参数,返回的就会是公式本身'=AVERAGE(B2:B8)'
3.append函数
能够一次性添加多行数据,从第一行空白行开始写入。
# 添加一行
row = [1 ,2. 3. 4. 5]
sheet.append(row)
# 添加多行
rows = [
['Number', 'data1', 'data2'],
[2. 40. 30],
[3. 40. 25],
[4. 50. 30],
[5. 30. 10],
[6. 25. 5],
[7. 50. 10],
]
注意:append函数只能按行写入。
4.zip()函数
使用zip我们能够按列写入数据
list(zip(*rows))
# out
[('Number', 2. 3. 4. 5. 6. 7),
('data1', 40. 40. 50. 30. 25. 50),
('data2', 30. 25. 30. 10. 5. 10)]
说明一下:
list(zip(*rows)),首先*rows将列表打散,也可以说是填入了若干个参数,zip从每一个列表中提取第1个值并将其组合成一个tuple,再从每一个列表中提取第2个值,再组合成一个tuple,一直到最短的那个列表的最后一个值提取完毕时结束,其他较长列表的在这之后的值会被舍弃,也就相当于,最后的元组个数是由原来每个参数(可迭代对象)的最短长度决定的。例如:现在随便删掉一个值,最短列表长度为2.那么data2那一列的值就会被全部舍弃。
rows = [
['Number', 'data1', 'data2'],
[2. 40],
[3. 40. 25],
[4. 50. 30],
[5. 30. 10],
[6. 25. 5],
[7. 50. 10],
]
# out
[('Number', 2. 3. 4. 5. 6. 7), ('data1', 40. 40. 50. 30. 25. 50)]
最后zip返回的是zip对象,需要再使用list转换下。
以上就是小编今天跟大家分享的如何使用python处理EXCEL表格的基本操作,获取EXCEL和写入EXCEL,希望对于大家大批量处理EXCEL有所帮助。python是一款功能强大的数据分析工具,我们平时工作中的很多事项都可以用python来进行处理。希望python能帮助大家从繁琐的重复性工作中解脱粗来。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-252025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-25从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-25用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18